Model for multiple imputation to estimate daily rainfall data and filling of faults.

Detalhes bibliográficos
Autor(a) principal: CARVALHO, J. R. P. de
Data de Publicação: 2017
Outros Autores: MONTEIRO, J. E. B. de A., NAKAI, A. M., ASSAD, E. D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083153
http://dx.doi.org/10.1590/0102-7786324006
Resumo: Modeling by multiple enchained imputation is an area of growing importance. However, its models and methods are frequently developed for specific applications. In this study the model for multiple imputation was used to estimate daily rainfall data. Daily precipitation records from several meteorological stations were used, obtained from system AGRITEMPO for two homogenous climatic zones. The precipitation values obtained for two dates (Jan. 20th 2005 and May 2nd 2005) using the multiple imputation model were compared with geo-statistics techniques ordinary Kriging and Co-kriging with the altitude as an auxiliary variable. The multiple imputation model was 16% better for the first zone and over 23% for the second one, compared to the rainfall estimation obtained by geo-statistical techniques. The model proved to be a versatile technique, presenting coherent results with the conditions of different zones and times.
id EMBR_2c4962c0e2ce33593fe7ab6934dc2a51
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1083153
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Model for multiple imputation to estimate daily rainfall data and filling of faults.GeoestatísticaSistema AgritempoPrecipitaçãoModelagem por imputação múltiplaModel by multiple imputationPrecipitationOrdinary krigingOrdinary Co-krigingHomogeneous zonesMissing dataStatistical inferenceMeteorological dataGeostatisticsModeling by multiple enchained imputation is an area of growing importance. However, its models and methods are frequently developed for specific applications. In this study the model for multiple imputation was used to estimate daily rainfall data. Daily precipitation records from several meteorological stations were used, obtained from system AGRITEMPO for two homogenous climatic zones. The precipitation values obtained for two dates (Jan. 20th 2005 and May 2nd 2005) using the multiple imputation model were compared with geo-statistics techniques ordinary Kriging and Co-kriging with the altitude as an auxiliary variable. The multiple imputation model was 16% better for the first zone and over 23% for the second one, compared to the rainfall estimation obtained by geo-statistical techniques. The model proved to be a versatile technique, presenting coherent results with the conditions of different zones and times.Na publicação: José Eduardo Boffinho Almeida Monteiro.JOSE RUY PORTO DE CARVALHO, CNPTIA; JOSE EDUARDO B DE ALMEIDA MONTEIRO, CNPTIA; ALAN MASSARU NAKAI, CNPTIA; EDUARDO DELGADO ASSAD, CNPTIA.CARVALHO, J. R. P. deMONTEIRO, J. E. B. de A.NAKAI, A. M.ASSAD, E. D.2017-12-21T23:24:37Z2017-12-21T23:24:37Z2017-12-2120172017-12-21T23:24:37Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRevista Brasileira de Meteorologia, São Paulo, v. 32, n. 4, 575-583, Oct./Dec. 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083153http://dx.doi.org/10.1590/0102-7786324006enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-12-21T23:24:44Zoai:www.alice.cnptia.embrapa.br:doc/1083153Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-12-21T23:24:44falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-12-21T23:24:44Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Model for multiple imputation to estimate daily rainfall data and filling of faults.
title Model for multiple imputation to estimate daily rainfall data and filling of faults.
spellingShingle Model for multiple imputation to estimate daily rainfall data and filling of faults.
CARVALHO, J. R. P. de
Geoestatística
Sistema Agritempo
Precipitação
Modelagem por imputação múltipla
Model by multiple imputation
Precipitation
Ordinary kriging
Ordinary Co-kriging
Homogeneous zones
Missing data
Statistical inference
Meteorological data
Geostatistics
title_short Model for multiple imputation to estimate daily rainfall data and filling of faults.
title_full Model for multiple imputation to estimate daily rainfall data and filling of faults.
title_fullStr Model for multiple imputation to estimate daily rainfall data and filling of faults.
title_full_unstemmed Model for multiple imputation to estimate daily rainfall data and filling of faults.
title_sort Model for multiple imputation to estimate daily rainfall data and filling of faults.
author CARVALHO, J. R. P. de
author_facet CARVALHO, J. R. P. de
MONTEIRO, J. E. B. de A.
NAKAI, A. M.
ASSAD, E. D.
author_role author
author2 MONTEIRO, J. E. B. de A.
NAKAI, A. M.
ASSAD, E. D.
author2_role author
author
author
dc.contributor.none.fl_str_mv JOSE RUY PORTO DE CARVALHO, CNPTIA; JOSE EDUARDO B DE ALMEIDA MONTEIRO, CNPTIA; ALAN MASSARU NAKAI, CNPTIA; EDUARDO DELGADO ASSAD, CNPTIA.
dc.contributor.author.fl_str_mv CARVALHO, J. R. P. de
MONTEIRO, J. E. B. de A.
NAKAI, A. M.
ASSAD, E. D.
dc.subject.por.fl_str_mv Geoestatística
Sistema Agritempo
Precipitação
Modelagem por imputação múltipla
Model by multiple imputation
Precipitation
Ordinary kriging
Ordinary Co-kriging
Homogeneous zones
Missing data
Statistical inference
Meteorological data
Geostatistics
topic Geoestatística
Sistema Agritempo
Precipitação
Modelagem por imputação múltipla
Model by multiple imputation
Precipitation
Ordinary kriging
Ordinary Co-kriging
Homogeneous zones
Missing data
Statistical inference
Meteorological data
Geostatistics
description Modeling by multiple enchained imputation is an area of growing importance. However, its models and methods are frequently developed for specific applications. In this study the model for multiple imputation was used to estimate daily rainfall data. Daily precipitation records from several meteorological stations were used, obtained from system AGRITEMPO for two homogenous climatic zones. The precipitation values obtained for two dates (Jan. 20th 2005 and May 2nd 2005) using the multiple imputation model were compared with geo-statistics techniques ordinary Kriging and Co-kriging with the altitude as an auxiliary variable. The multiple imputation model was 16% better for the first zone and over 23% for the second one, compared to the rainfall estimation obtained by geo-statistical techniques. The model proved to be a versatile technique, presenting coherent results with the conditions of different zones and times.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-21T23:24:37Z
2017-12-21T23:24:37Z
2017-12-21
2017
2017-12-21T23:24:37Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Revista Brasileira de Meteorologia, São Paulo, v. 32, n. 4, 575-583, Oct./Dec. 2017.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083153
http://dx.doi.org/10.1590/0102-7786324006
identifier_str_mv Revista Brasileira de Meteorologia, São Paulo, v. 32, n. 4, 575-583, Oct./Dec. 2017.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083153
http://dx.doi.org/10.1590/0102-7786324006
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503446698655744