Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026 |
Resumo: | Abstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures. |
id |
EMBR_2e850b991327f2b395d206fd27be64fb |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1125026 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.PastoPastagem tropicalFloresta aleatóriaRandom forestMixed pasturesIntegrated systemsTexture measuresExtreme gradient boostingBiomassaPastagem MistaSensoriamento RemotoPasturesTropical pasturesBiomassAboveground biomassRemote sensingAbstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures.Article number: 2534.ALINY A. DOS REIS, Nipe, Feagri/Unicamp; JOÃO P. S. WERNER, Feagri/Unicamp; BRUNA C. SILVA, Feagri/Unicamp; GLEYCE K. D. A. FIGUEIREDO, Feagri/Unicamp; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; RUBENS A. C. LAMPARELLI, Nipe/Unicamp; JANSLE V. ROCHA, Feagri/Unicamp; PAULO S. G. MAGALHÃES, Nipe/Unicamp.REIS, A. A. dosWERNER, J. P. S.SILVA, B. C.FIGUEIREDO, G. K. D. A.ANTUNES, J. F. G.ESQUERDO, J. C. D. M.COUTINHO, A. C.LAMPARELLI, R. A. C.ROCHA, J. V.MAGALHÃES, P. S. G.2020-09-19T04:39:18Z2020-09-19T04:39:18Z2020-09-182020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/112502610.3390/rs12162534enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-09-19T04:39:25Zoai:www.alice.cnptia.embrapa.br:doc/1125026Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-09-19T04:39:25falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-09-19T04:39:25Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
title |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
spellingShingle |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. REIS, A. A. dos Pasto Pastagem tropical Floresta aleatória Random forest Mixed pastures Integrated systems Texture measures Extreme gradient boosting Biomassa Pastagem Mista Sensoriamento Remoto Pastures Tropical pastures Biomass Aboveground biomass Remote sensing |
title_short |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
title_full |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
title_fullStr |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
title_full_unstemmed |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
title_sort |
Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery. |
author |
REIS, A. A. dos |
author_facet |
REIS, A. A. dos WERNER, J. P. S. SILVA, B. C. FIGUEIREDO, G. K. D. A. ANTUNES, J. F. G. ESQUERDO, J. C. D. M. COUTINHO, A. C. LAMPARELLI, R. A. C. ROCHA, J. V. MAGALHÃES, P. S. G. |
author_role |
author |
author2 |
WERNER, J. P. S. SILVA, B. C. FIGUEIREDO, G. K. D. A. ANTUNES, J. F. G. ESQUERDO, J. C. D. M. COUTINHO, A. C. LAMPARELLI, R. A. C. ROCHA, J. V. MAGALHÃES, P. S. G. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
ALINY A. DOS REIS, Nipe, Feagri/Unicamp; JOÃO P. S. WERNER, Feagri/Unicamp; BRUNA C. SILVA, Feagri/Unicamp; GLEYCE K. D. A. FIGUEIREDO, Feagri/Unicamp; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; RUBENS A. C. LAMPARELLI, Nipe/Unicamp; JANSLE V. ROCHA, Feagri/Unicamp; PAULO S. G. MAGALHÃES, Nipe/Unicamp. |
dc.contributor.author.fl_str_mv |
REIS, A. A. dos WERNER, J. P. S. SILVA, B. C. FIGUEIREDO, G. K. D. A. ANTUNES, J. F. G. ESQUERDO, J. C. D. M. COUTINHO, A. C. LAMPARELLI, R. A. C. ROCHA, J. V. MAGALHÃES, P. S. G. |
dc.subject.por.fl_str_mv |
Pasto Pastagem tropical Floresta aleatória Random forest Mixed pastures Integrated systems Texture measures Extreme gradient boosting Biomassa Pastagem Mista Sensoriamento Remoto Pastures Tropical pastures Biomass Aboveground biomass Remote sensing |
topic |
Pasto Pastagem tropical Floresta aleatória Random forest Mixed pastures Integrated systems Texture measures Extreme gradient boosting Biomassa Pastagem Mista Sensoriamento Remoto Pastures Tropical pastures Biomass Aboveground biomass Remote sensing |
description |
Abstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-19T04:39:18Z 2020-09-19T04:39:18Z 2020-09-18 2020 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Remote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026 10.3390/rs12162534 |
identifier_str_mv |
Remote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020. 10.3390/rs12162534 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503495844364288 |