Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.

Detalhes bibliográficos
Autor(a) principal: REIS, A. A. dos
Data de Publicação: 2020
Outros Autores: WERNER, J. P. S., SILVA, B. C., FIGUEIREDO, G. K. D. A., ANTUNES, J. F. G., ESQUERDO, J. C. D. M., COUTINHO, A. C., LAMPARELLI, R. A. C., ROCHA, J. V., MAGALHÃES, P. S. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026
Resumo: Abstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures.
id EMBR_2e850b991327f2b395d206fd27be64fb
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1125026
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.PastoPastagem tropicalFloresta aleatóriaRandom forestMixed pasturesIntegrated systemsTexture measuresExtreme gradient boostingBiomassaPastagem MistaSensoriamento RemotoPasturesTropical pasturesBiomassAboveground biomassRemote sensingAbstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures.Article number: 2534.ALINY A. DOS REIS, Nipe, Feagri/Unicamp; JOÃO P. S. WERNER, Feagri/Unicamp; BRUNA C. SILVA, Feagri/Unicamp; GLEYCE K. D. A. FIGUEIREDO, Feagri/Unicamp; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; RUBENS A. C. LAMPARELLI, Nipe/Unicamp; JANSLE V. ROCHA, Feagri/Unicamp; PAULO S. G. MAGALHÃES, Nipe/Unicamp.REIS, A. A. dosWERNER, J. P. S.SILVA, B. C.FIGUEIREDO, G. K. D. A.ANTUNES, J. F. G.ESQUERDO, J. C. D. M.COUTINHO, A. C.LAMPARELLI, R. A. C.ROCHA, J. V.MAGALHÃES, P. S. G.2020-09-19T04:39:18Z2020-09-19T04:39:18Z2020-09-182020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/112502610.3390/rs12162534enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-09-19T04:39:25Zoai:www.alice.cnptia.embrapa.br:doc/1125026Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-09-19T04:39:25falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-09-19T04:39:25Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
title Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
spellingShingle Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
REIS, A. A. dos
Pasto
Pastagem tropical
Floresta aleatória
Random forest
Mixed pastures
Integrated systems
Texture measures
Extreme gradient boosting
Biomassa
Pastagem Mista
Sensoriamento Remoto
Pastures
Tropical pastures
Biomass
Aboveground biomass
Remote sensing
title_short Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
title_full Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
title_fullStr Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
title_full_unstemmed Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
title_sort Monitoring pasture aboveground biomass and canopy height in an integrated crop-livestock system using textural information from PlanetScope imagery.
author REIS, A. A. dos
author_facet REIS, A. A. dos
WERNER, J. P. S.
SILVA, B. C.
FIGUEIREDO, G. K. D. A.
ANTUNES, J. F. G.
ESQUERDO, J. C. D. M.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
ROCHA, J. V.
MAGALHÃES, P. S. G.
author_role author
author2 WERNER, J. P. S.
SILVA, B. C.
FIGUEIREDO, G. K. D. A.
ANTUNES, J. F. G.
ESQUERDO, J. C. D. M.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
ROCHA, J. V.
MAGALHÃES, P. S. G.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv ALINY A. DOS REIS, Nipe, Feagri/Unicamp; JOÃO P. S. WERNER, Feagri/Unicamp; BRUNA C. SILVA, Feagri/Unicamp; GLEYCE K. D. A. FIGUEIREDO, Feagri/Unicamp; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; RUBENS A. C. LAMPARELLI, Nipe/Unicamp; JANSLE V. ROCHA, Feagri/Unicamp; PAULO S. G. MAGALHÃES, Nipe/Unicamp.
dc.contributor.author.fl_str_mv REIS, A. A. dos
WERNER, J. P. S.
SILVA, B. C.
FIGUEIREDO, G. K. D. A.
ANTUNES, J. F. G.
ESQUERDO, J. C. D. M.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
ROCHA, J. V.
MAGALHÃES, P. S. G.
dc.subject.por.fl_str_mv Pasto
Pastagem tropical
Floresta aleatória
Random forest
Mixed pastures
Integrated systems
Texture measures
Extreme gradient boosting
Biomassa
Pastagem Mista
Sensoriamento Remoto
Pastures
Tropical pastures
Biomass
Aboveground biomass
Remote sensing
topic Pasto
Pastagem tropical
Floresta aleatória
Random forest
Mixed pastures
Integrated systems
Texture measures
Extreme gradient boosting
Biomassa
Pastagem Mista
Sensoriamento Remoto
Pastures
Tropical pastures
Biomass
Aboveground biomass
Remote sensing
description Abstract: Fast and accurate quantification of the available pasture biomass is essential to support grazing management decisions in intensively managed fields. The increasing temporal and spatial resolutions oered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely sensed data. Here, we assessed the feasibility of using spectral and textural information derived from PlanetScope imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting (XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH estimations compared to the performance obtained using only spectral bands or vegetation indices. The best results were found by employing the XGBoost models based only on texture measures. These models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89% of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively. This study demonstrated the potential of using texture measures to improve the prediction accuracy of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively managed mixed pastures.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-19T04:39:18Z
2020-09-19T04:39:18Z
2020-09-18
2020
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Remote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026
10.3390/rs12162534
identifier_str_mv Remote Sensing, v. 12, n. 16, p. 1-21, Aug. 2020.
10.3390/rs12162534
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125026
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503495844364288