Automatic environmental zoning with self-organizing maps.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941 |
Resumo: | This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning. |
id |
EMBR_3f6453757e258268ea219c8fca25ee08 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1103941 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Automatic environmental zoning with self-organizing maps.Artificial neural networkExploratory spatial analysisSimilarity coefficientsAlto Taquari riverCorrespondence analysisThis article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning.MARCOS AURELIO SANTOS DA SILVA, CPATC; RENATO JOSE SANTOS MACIEL, CNPTIA; LEONARDO N. MATOS, UNIVERSIDADE FEDERAL DO SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM.SILVA, M. A. S. daMACIEL, R. J. S.MATOS, L. N.DOMPIERI, M. H. G.2019-01-16T23:39:18Z2019-01-16T23:39:18Z2019-01-1420182019-04-26T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleModern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018.2333-2581http://www.alice.cnptia.embrapa.br/alice/handle/doc/110394110.15341/mese(2333-2581)/09.04.2018/011porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-01-16T23:39:24Zoai:www.alice.cnptia.embrapa.br:doc/1103941Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-01-16T23:39:24falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-01-16T23:39:24Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Automatic environmental zoning with self-organizing maps. |
title |
Automatic environmental zoning with self-organizing maps. |
spellingShingle |
Automatic environmental zoning with self-organizing maps. SILVA, M. A. S. da Artificial neural network Exploratory spatial analysis Similarity coefficients Alto Taquari river Correspondence analysis |
title_short |
Automatic environmental zoning with self-organizing maps. |
title_full |
Automatic environmental zoning with self-organizing maps. |
title_fullStr |
Automatic environmental zoning with self-organizing maps. |
title_full_unstemmed |
Automatic environmental zoning with self-organizing maps. |
title_sort |
Automatic environmental zoning with self-organizing maps. |
author |
SILVA, M. A. S. da |
author_facet |
SILVA, M. A. S. da MACIEL, R. J. S. MATOS, L. N. DOMPIERI, M. H. G. |
author_role |
author |
author2 |
MACIEL, R. J. S. MATOS, L. N. DOMPIERI, M. H. G. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
MARCOS AURELIO SANTOS DA SILVA, CPATC; RENATO JOSE SANTOS MACIEL, CNPTIA; LEONARDO N. MATOS, UNIVERSIDADE FEDERAL DO SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM. |
dc.contributor.author.fl_str_mv |
SILVA, M. A. S. da MACIEL, R. J. S. MATOS, L. N. DOMPIERI, M. H. G. |
dc.subject.por.fl_str_mv |
Artificial neural network Exploratory spatial analysis Similarity coefficients Alto Taquari river Correspondence analysis |
topic |
Artificial neural network Exploratory spatial analysis Similarity coefficients Alto Taquari river Correspondence analysis |
description |
This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-01-16T23:39:18Z 2019-01-16T23:39:18Z 2019-01-14 2019-04-26T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Modern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018. 2333-2581 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941 10.15341/mese(2333-2581)/09.04.2018/011 |
identifier_str_mv |
Modern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018. 2333-2581 10.15341/mese(2333-2581)/09.04.2018/011 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503469416054784 |