Automatic environmental zoning with self-organizing maps.

Detalhes bibliográficos
Autor(a) principal: SILVA, M. A. S. da
Data de Publicação: 2018
Outros Autores: MACIEL, R. J. S., MATOS, L. N., DOMPIERI, M. H. G.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941
Resumo: This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning.
id EMBR_3f6453757e258268ea219c8fca25ee08
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1103941
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Automatic environmental zoning with self-organizing maps.Artificial neural networkExploratory spatial analysisSimilarity coefficientsAlto Taquari riverCorrespondence analysisThis article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning.MARCOS AURELIO SANTOS DA SILVA, CPATC; RENATO JOSE SANTOS MACIEL, CNPTIA; LEONARDO N. MATOS, UNIVERSIDADE FEDERAL DO SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM.SILVA, M. A. S. daMACIEL, R. J. S.MATOS, L. N.DOMPIERI, M. H. G.2019-01-16T23:39:18Z2019-01-16T23:39:18Z2019-01-1420182019-04-26T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleModern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018.2333-2581http://www.alice.cnptia.embrapa.br/alice/handle/doc/110394110.15341/mese(2333-2581)/09.04.2018/011porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-01-16T23:39:24Zoai:www.alice.cnptia.embrapa.br:doc/1103941Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-01-16T23:39:24falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-01-16T23:39:24Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Automatic environmental zoning with self-organizing maps.
title Automatic environmental zoning with self-organizing maps.
spellingShingle Automatic environmental zoning with self-organizing maps.
SILVA, M. A. S. da
Artificial neural network
Exploratory spatial analysis
Similarity coefficients
Alto Taquari river
Correspondence analysis
title_short Automatic environmental zoning with self-organizing maps.
title_full Automatic environmental zoning with self-organizing maps.
title_fullStr Automatic environmental zoning with self-organizing maps.
title_full_unstemmed Automatic environmental zoning with self-organizing maps.
title_sort Automatic environmental zoning with self-organizing maps.
author SILVA, M. A. S. da
author_facet SILVA, M. A. S. da
MACIEL, R. J. S.
MATOS, L. N.
DOMPIERI, M. H. G.
author_role author
author2 MACIEL, R. J. S.
MATOS, L. N.
DOMPIERI, M. H. G.
author2_role author
author
author
dc.contributor.none.fl_str_mv MARCOS AURELIO SANTOS DA SILVA, CPATC; RENATO JOSE SANTOS MACIEL, CNPTIA; LEONARDO N. MATOS, UNIVERSIDADE FEDERAL DO SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM.
dc.contributor.author.fl_str_mv SILVA, M. A. S. da
MACIEL, R. J. S.
MATOS, L. N.
DOMPIERI, M. H. G.
dc.subject.por.fl_str_mv Artificial neural network
Exploratory spatial analysis
Similarity coefficients
Alto Taquari river
Correspondence analysis
topic Artificial neural network
Exploratory spatial analysis
Similarity coefficients
Alto Taquari river
Correspondence analysis
description This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-01-16T23:39:18Z
2019-01-16T23:39:18Z
2019-01-14
2019-04-26T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Modern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018.
2333-2581
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941
10.15341/mese(2333-2581)/09.04.2018/011
identifier_str_mv Modern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018.
2333-2581
10.15341/mese(2333-2581)/09.04.2018/011
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503469416054784