Identifying Passive Clause Patterns Based on Self-Organizing Maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista odisséia |
Texto Completo: | https://periodicos.ufrn.br/odisseia/article/view/32258 |
Resumo: | The aim of the current article is to lay the foundations for thedevelopment of a descriptive model capable of differentiating several configurationsembodied by passive clauses formed with auxiliary verb ser (to be) + past participleof the main verb in specific interaction contexts, based on using the Neural Networkof Self-Organizing Maps (SOM Network). All 220 constitutive clauses forming theherein analyzed corpus were allocated by the SOM Network in 46 neurons, whichrepresent different samples of passive clauses, by concomitantly taking intoconsideration the classes of all eight parameters selected in the current research.These 46 samples reflect variations in the grammatical and pragmatic-discursiveconfigurations of passive clauses, in a quite thorough manner, by taking intoconsideration the theoretical apparatus of Systemic-Functional Grammar. Thedefinition of the optimal number of groups allowed us to deduce data from threeimportant groupings that have portrayed the major meanings elicited by the analyzedpassive clauses within the scope of all 102 analyzed journalistic news. |
id |
UFRN-7_7babfbde72ff4af0c0c11439e13ca99a |
---|---|
oai_identifier_str |
oai:periodicos.ufrn.br:article/32258 |
network_acronym_str |
UFRN-7 |
network_name_str |
Revista odisséia |
repository_id_str |
|
spelling |
Identifying Passive Clause Patterns Based on Self-Organizing MapsReconhecimento de padrões de orações passivas por meio de Mapas Auto-organizáveisPassive clausesSystemic-Functional GrammarNeural Network of Self-Organizing MapsOrações passivasGramática Sistêmico-FuncionalRede Neural de Mapas Auto-organizáveisThe aim of the current article is to lay the foundations for thedevelopment of a descriptive model capable of differentiating several configurationsembodied by passive clauses formed with auxiliary verb ser (to be) + past participleof the main verb in specific interaction contexts, based on using the Neural Networkof Self-Organizing Maps (SOM Network). All 220 constitutive clauses forming theherein analyzed corpus were allocated by the SOM Network in 46 neurons, whichrepresent different samples of passive clauses, by concomitantly taking intoconsideration the classes of all eight parameters selected in the current research.These 46 samples reflect variations in the grammatical and pragmatic-discursiveconfigurations of passive clauses, in a quite thorough manner, by taking intoconsideration the theoretical apparatus of Systemic-Functional Grammar. Thedefinition of the optimal number of groups allowed us to deduce data from threeimportant groupings that have portrayed the major meanings elicited by the analyzedpassive clauses within the scope of all 102 analyzed journalistic news.O presente artigo busca lançar as bases para o desenvolvimento de ummodelo descritivo capaz de distinguir, por intermédio da Rede Neural de MapasAuto-organizáveis (Rede SOM), as diversas configurações que as orações passivasformadas com verbo auxiliar ser + particípio passado do verbo principal assumemem contextos específicos de interação. As 220 orações constitutivas do corpusforam alocadas, pela Rede SOM, em 46 neurônios, que representam diferentesexemplares de orações passivas, considerando, concomitantemente, as classes dosoito parâmetros selecionados por esta pesquisa. Esses 46 exemplares refletem, deforma bastante criteriosa, as variações das orações passivas em termos deconfigurações gramatical e pragmático-discursiva, considerando o aparato teórico daGramática Sistêmico-Funcional. A definição do número ótimo de grupos possibilitou,ainda, a depreensão dos dados a partir de, basicamente, três importantesagrupamentos, que retratam os principais significados evocados pelas oraçõespassivas no âmbito das 102 notícias jornalísticas analisadas.UFRN2023-06-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufrn.br/odisseia/article/view/3225810.21680/1983-2435.2023v8n1ID32258Odisseia; Vol. 8 No. 1 (2023): Revista Odisseia; 36-56Revue Odisseia; Vol. 8 No. 1 (2023): Revista Odisseia; 36-56Revista Odisseia; v. 8 n. 1 (2023): Revista Odisseia; 36-561983-243510.21680/1983-2435.2023v8n1reponame:Revista odisséiainstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNporhttps://periodicos.ufrn.br/odisseia/article/view/32258/17032Copyright (c) 2023 Revista Odisseiahttp://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessLaurett Neves Damasceno, GesienyVirginia Rodrigues, Violeta2023-06-23T16:59:32Zoai:periodicos.ufrn.br:article/32258Revistahttps://periodicos.ufrn.br/odisseia/indexPUBhttps://periodicos.ufrn.br/odisseia/oai||revistaodisseia2016@gmail.com1983-24351983-2435opendoar:2023-06-23T16:59:32Revista odisséia - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.none.fl_str_mv |
Identifying Passive Clause Patterns Based on Self-Organizing Maps Reconhecimento de padrões de orações passivas por meio de Mapas Auto-organizáveis |
title |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
spellingShingle |
Identifying Passive Clause Patterns Based on Self-Organizing Maps Laurett Neves Damasceno, Gesieny Passive clauses Systemic-Functional Grammar Neural Network of Self-Organizing Maps Orações passivas Gramática Sistêmico-Funcional Rede Neural de Mapas Auto-organizáveis |
title_short |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
title_full |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
title_fullStr |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
title_full_unstemmed |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
title_sort |
Identifying Passive Clause Patterns Based on Self-Organizing Maps |
author |
Laurett Neves Damasceno, Gesieny |
author_facet |
Laurett Neves Damasceno, Gesieny Virginia Rodrigues, Violeta |
author_role |
author |
author2 |
Virginia Rodrigues, Violeta |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Laurett Neves Damasceno, Gesieny Virginia Rodrigues, Violeta |
dc.subject.por.fl_str_mv |
Passive clauses Systemic-Functional Grammar Neural Network of Self-Organizing Maps Orações passivas Gramática Sistêmico-Funcional Rede Neural de Mapas Auto-organizáveis |
topic |
Passive clauses Systemic-Functional Grammar Neural Network of Self-Organizing Maps Orações passivas Gramática Sistêmico-Funcional Rede Neural de Mapas Auto-organizáveis |
description |
The aim of the current article is to lay the foundations for thedevelopment of a descriptive model capable of differentiating several configurationsembodied by passive clauses formed with auxiliary verb ser (to be) + past participleof the main verb in specific interaction contexts, based on using the Neural Networkof Self-Organizing Maps (SOM Network). All 220 constitutive clauses forming theherein analyzed corpus were allocated by the SOM Network in 46 neurons, whichrepresent different samples of passive clauses, by concomitantly taking intoconsideration the classes of all eight parameters selected in the current research.These 46 samples reflect variations in the grammatical and pragmatic-discursiveconfigurations of passive clauses, in a quite thorough manner, by taking intoconsideration the theoretical apparatus of Systemic-Functional Grammar. Thedefinition of the optimal number of groups allowed us to deduce data from threeimportant groupings that have portrayed the major meanings elicited by the analyzedpassive clauses within the scope of all 102 analyzed journalistic news. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufrn.br/odisseia/article/view/32258 10.21680/1983-2435.2023v8n1ID32258 |
url |
https://periodicos.ufrn.br/odisseia/article/view/32258 |
identifier_str_mv |
10.21680/1983-2435.2023v8n1ID32258 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufrn.br/odisseia/article/view/32258/17032 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Revista Odisseia http://creativecommons.org/licenses/by-nc-sa/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Revista Odisseia http://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UFRN |
publisher.none.fl_str_mv |
UFRN |
dc.source.none.fl_str_mv |
Odisseia; Vol. 8 No. 1 (2023): Revista Odisseia; 36-56 Revue Odisseia; Vol. 8 No. 1 (2023): Revista Odisseia; 36-56 Revista Odisseia; v. 8 n. 1 (2023): Revista Odisseia; 36-56 1983-2435 10.21680/1983-2435.2023v8n1 reponame:Revista odisséia instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Revista odisséia |
collection |
Revista odisséia |
repository.name.fl_str_mv |
Revista odisséia - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
||revistaodisseia2016@gmail.com |
_version_ |
1809282349518553088 |