Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2008
Outros Autores: BATISTELLA, M., MORAN, E.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571
Resumo: Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available.
id EMBR_4bfdb5ee7a2b6c6a0c540cc9a0498cf2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/31571
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.Brazilian AmazonImage collection and preprocessingVegetation Chance DetectionTraditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available.DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EMÍLIO MORAN, Indiana University.LU, D.BATISTELLA, M.MORAN, E.2014-08-26T06:26:10Z2014-08-26T06:26:10Z2009-03-0220082014-08-26T06:26:10Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008.0099-1112http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:31:50Zoai:www.alice.cnptia.embrapa.br:doc/31571Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:31:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:31:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
title Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
spellingShingle Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
LU, D.
Brazilian Amazon
Image collection and preprocessing
Vegetation Chance Detection
title_short Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
title_full Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
title_fullStr Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
title_full_unstemmed Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
title_sort Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
author LU, D.
author_facet LU, D.
BATISTELLA, M.
MORAN, E.
author_role author
author2 BATISTELLA, M.
MORAN, E.
author2_role author
author
dc.contributor.none.fl_str_mv DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EMÍLIO MORAN, Indiana University.
dc.contributor.author.fl_str_mv LU, D.
BATISTELLA, M.
MORAN, E.
dc.subject.por.fl_str_mv Brazilian Amazon
Image collection and preprocessing
Vegetation Chance Detection
topic Brazilian Amazon
Image collection and preprocessing
Vegetation Chance Detection
description Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available.
publishDate 2008
dc.date.none.fl_str_mv 2008
2009-03-02
2014-08-26T06:26:10Z
2014-08-26T06:26:10Z
2014-08-26T06:26:10Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Photogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008.
0099-1112
http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571
identifier_str_mv Photogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008.
0099-1112
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503393606107136