Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571 |
Resumo: | Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available. |
id |
EMBR_4bfdb5ee7a2b6c6a0c540cc9a0498cf2 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/31571 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon.Brazilian AmazonImage collection and preprocessingVegetation Chance DetectionTraditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available.DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EMÍLIO MORAN, Indiana University.LU, D.BATISTELLA, M.MORAN, E.2014-08-26T06:26:10Z2014-08-26T06:26:10Z2009-03-0220082014-08-26T06:26:10Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008.0099-1112http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:31:50Zoai:www.alice.cnptia.embrapa.br:doc/31571Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:31:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:31:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
title |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
spellingShingle |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. LU, D. Brazilian Amazon Image collection and preprocessing Vegetation Chance Detection |
title_short |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
title_full |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
title_fullStr |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
title_full_unstemmed |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
title_sort |
Integration of landsat TM and SPOT HRG Images for vegetation change detection in the Brazilian Amazon. |
author |
LU, D. |
author_facet |
LU, D. BATISTELLA, M. MORAN, E. |
author_role |
author |
author2 |
BATISTELLA, M. MORAN, E. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EMÍLIO MORAN, Indiana University. |
dc.contributor.author.fl_str_mv |
LU, D. BATISTELLA, M. MORAN, E. |
dc.subject.por.fl_str_mv |
Brazilian Amazon Image collection and preprocessing Vegetation Chance Detection |
topic |
Brazilian Amazon Image collection and preprocessing Vegetation Chance Detection |
description |
Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation chance trajectories. This research indicates promising vegetation change techniques especially for vegetation gain and loss, even if very limited reference data are available. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2009-03-02 2014-08-26T06:26:10Z 2014-08-26T06:26:10Z 2014-08-26T06:26:10Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008. 0099-1112 http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571 |
identifier_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 74, n. 4, p. 421-430, 2008. 0099-1112 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/31571 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503393606107136 |