A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2008
Outros Autores: BATISTELLA, M., MIRANDA, E. E. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577
Resumo: Complex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
id EMBR_c7824767e562d8adca2df71894201479
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/31577
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.Comparative studyLandsat TM and SPOT HRG ImagesBrazilian AmazonMoist tropical regionsMachadinho d´OesteComplex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EVARISTO EDUARDO DE MIRANDA, CNPM.LU, D.BATISTELLA, M.MIRANDA, E. E. de2014-08-26T06:26:14Z2014-08-26T06:26:14Z2009-03-0220082014-08-26T06:26:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008.0099-1112http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:31:50Zoai:www.alice.cnptia.embrapa.br:doc/31577Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:31:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:31:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
title A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
spellingShingle A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
LU, D.
Comparative study
Landsat TM and SPOT HRG Images
Brazilian Amazon
Moist tropical regions
Machadinho d´Oeste
title_short A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
title_full A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
title_fullStr A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
title_full_unstemmed A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
title_sort A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
author LU, D.
author_facet LU, D.
BATISTELLA, M.
MIRANDA, E. E. de
author_role author
author2 BATISTELLA, M.
MIRANDA, E. E. de
author2_role author
author
dc.contributor.none.fl_str_mv DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EVARISTO EDUARDO DE MIRANDA, CNPM.
dc.contributor.author.fl_str_mv LU, D.
BATISTELLA, M.
MIRANDA, E. E. de
dc.subject.por.fl_str_mv Comparative study
Landsat TM and SPOT HRG Images
Brazilian Amazon
Moist tropical regions
Machadinho d´Oeste
topic Comparative study
Landsat TM and SPOT HRG Images
Brazilian Amazon
Moist tropical regions
Machadinho d´Oeste
description Complex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
publishDate 2008
dc.date.none.fl_str_mv 2008
2009-03-02
2014-08-26T06:26:14Z
2014-08-26T06:26:14Z
2014-08-26T06:26:14Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Photogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008.
0099-1112
http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577
identifier_str_mv Photogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008.
0099-1112
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503393607155712