A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577 |
Resumo: | Complex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. |
id |
EMBR_c7824767e562d8adca2df71894201479 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/31577 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon.Comparative studyLandsat TM and SPOT HRG ImagesBrazilian AmazonMoist tropical regionsMachadinho d´OesteComplex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EVARISTO EDUARDO DE MIRANDA, CNPM.LU, D.BATISTELLA, M.MIRANDA, E. E. de2014-08-26T06:26:14Z2014-08-26T06:26:14Z2009-03-0220082014-08-26T06:26:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePhotogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008.0099-1112http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:31:50Zoai:www.alice.cnptia.embrapa.br:doc/31577Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:31:50falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:31:50Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
title |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
spellingShingle |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. LU, D. Comparative study Landsat TM and SPOT HRG Images Brazilian Amazon Moist tropical regions Machadinho d´Oeste |
title_short |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
title_full |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
title_fullStr |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
title_full_unstemmed |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
title_sort |
A comparative study of landsat TM and SPOT HRG images of vegetation classification in the brazilian Amazon. |
author |
LU, D. |
author_facet |
LU, D. BATISTELLA, M. MIRANDA, E. E. de |
author_role |
author |
author2 |
BATISTELLA, M. MIRANDA, E. E. de |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DENGSHENG LU, Indiana University; MATEUS BATISTELLA, CNPM; EVARISTO EDUARDO DE MIRANDA, CNPM. |
dc.contributor.author.fl_str_mv |
LU, D. BATISTELLA, M. MIRANDA, E. E. de |
dc.subject.por.fl_str_mv |
Comparative study Landsat TM and SPOT HRG Images Brazilian Amazon Moist tropical regions Machadinho d´Oeste |
topic |
Comparative study Landsat TM and SPOT HRG Images Brazilian Amazon Moist tropical regions Machadinho d´Oeste |
description |
Complex forest structure and abundant tree species in the moist tropical regions often couse difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HBG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG of TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels X 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2009-03-02 2014-08-26T06:26:14Z 2014-08-26T06:26:14Z 2014-08-26T06:26:14Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008. 0099-1112 http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577 |
identifier_str_mv |
Photogrammetric Engineering & Remote Sensing, v. 74, n. 3, p. 311-321, mar. 2008. 0099-1112 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/31577 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503393607155712 |