Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118 http://dx.doi.org/10.1590/1678-992X-2017-0095 |
Resumo: | ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values. |
id |
EMBR_4cd5aa358b52af21260007bee906bc7b |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1092118 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.Green sugarcaneMineração de dadosData miningRandom Forest algorithmSaccharum OfficinarumArgilaCana de AçúcarSoil respirationClaySoil organic carbonSugarcaneABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values.ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp.TAVARES, R. L. M.OLIVEIRA, S. R. de M.BARROS, F. M. M. deFARHATE, C. V. V.SOUZA, Z. M. deLA SCALA JUNIOR, N.2018-06-02T00:35:29Z2018-06-02T00:35:29Z2018-06-0120182018-06-06T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118http://dx.doi.org/10.1590/1678-992X-2017-0095enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-06-02T00:35:37Zoai:www.alice.cnptia.embrapa.br:doc/1092118Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542018-06-02T00:35:37falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-06-02T00:35:37Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
title |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
spellingShingle |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. TAVARES, R. L. M. Green sugarcane Mineração de dados Data mining Random Forest algorithm Saccharum Officinarum Argila Cana de Açúcar Soil respiration Clay Soil organic carbon Sugarcane |
title_short |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
title_full |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
title_fullStr |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
title_full_unstemmed |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
title_sort |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
author |
TAVARES, R. L. M. |
author_facet |
TAVARES, R. L. M. OLIVEIRA, S. R. de M. BARROS, F. M. M. de FARHATE, C. V. V. SOUZA, Z. M. de LA SCALA JUNIOR, N. |
author_role |
author |
author2 |
OLIVEIRA, S. R. de M. BARROS, F. M. M. de FARHATE, C. V. V. SOUZA, Z. M. de LA SCALA JUNIOR, N. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp. |
dc.contributor.author.fl_str_mv |
TAVARES, R. L. M. OLIVEIRA, S. R. de M. BARROS, F. M. M. de FARHATE, C. V. V. SOUZA, Z. M. de LA SCALA JUNIOR, N. |
dc.subject.por.fl_str_mv |
Green sugarcane Mineração de dados Data mining Random Forest algorithm Saccharum Officinarum Argila Cana de Açúcar Soil respiration Clay Soil organic carbon Sugarcane |
topic |
Green sugarcane Mineração de dados Data mining Random Forest algorithm Saccharum Officinarum Argila Cana de Açúcar Soil respiration Clay Soil organic carbon Sugarcane |
description |
ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-02T00:35:29Z 2018-06-02T00:35:29Z 2018-06-01 2018 2018-06-06T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118 http://dx.doi.org/10.1590/1678-992X-2017-0095 |
identifier_str_mv |
Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118 http://dx.doi.org/10.1590/1678-992X-2017-0095 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503455922978816 |