Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.

Detalhes bibliográficos
Autor(a) principal: TAVARES, R. L. M.
Data de Publicação: 2018
Outros Autores: OLIVEIRA, S. R. de M., BARROS, F. M. M. de, FARHATE, C. V. V., SOUZA, Z. M. de, LA SCALA JUNIOR, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118
http://dx.doi.org/10.1590/1678-992X-2017-0095
Resumo: ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values.
id EMBR_4cd5aa358b52af21260007bee906bc7b
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1092118
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.Green sugarcaneMineração de dadosData miningRandom Forest algorithmSaccharum OfficinarumArgilaCana de AçúcarSoil respirationClaySoil organic carbonSugarcaneABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values.ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp.TAVARES, R. L. M.OLIVEIRA, S. R. de M.BARROS, F. M. M. deFARHATE, C. V. V.SOUZA, Z. M. deLA SCALA JUNIOR, N.2018-06-02T00:35:29Z2018-06-02T00:35:29Z2018-06-0120182018-06-06T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleScientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118http://dx.doi.org/10.1590/1678-992X-2017-0095enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-06-02T00:35:37Zoai:www.alice.cnptia.embrapa.br:doc/1092118Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542018-06-02T00:35:37falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-06-02T00:35:37Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
title Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
spellingShingle Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
TAVARES, R. L. M.
Green sugarcane
Mineração de dados
Data mining
Random Forest algorithm
Saccharum Officinarum
Argila
Cana de Açúcar
Soil respiration
Clay
Soil organic carbon
Sugarcane
title_short Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
title_full Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
title_fullStr Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
title_full_unstemmed Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
title_sort Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
author TAVARES, R. L. M.
author_facet TAVARES, R. L. M.
OLIVEIRA, S. R. de M.
BARROS, F. M. M. de
FARHATE, C. V. V.
SOUZA, Z. M. de
LA SCALA JUNIOR, N.
author_role author
author2 OLIVEIRA, S. R. de M.
BARROS, F. M. M. de
FARHATE, C. V. V.
SOUZA, Z. M. de
LA SCALA JUNIOR, N.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp.
dc.contributor.author.fl_str_mv TAVARES, R. L. M.
OLIVEIRA, S. R. de M.
BARROS, F. M. M. de
FARHATE, C. V. V.
SOUZA, Z. M. de
LA SCALA JUNIOR, N.
dc.subject.por.fl_str_mv Green sugarcane
Mineração de dados
Data mining
Random Forest algorithm
Saccharum Officinarum
Argila
Cana de Açúcar
Soil respiration
Clay
Soil organic carbon
Sugarcane
topic Green sugarcane
Mineração de dados
Data mining
Random Forest algorithm
Saccharum Officinarum
Argila
Cana de Açúcar
Soil respiration
Clay
Soil organic carbon
Sugarcane
description ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-02T00:35:29Z
2018-06-02T00:35:29Z
2018-06-01
2018
2018-06-06T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118
http://dx.doi.org/10.1590/1678-992X-2017-0095
identifier_str_mv Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092118
http://dx.doi.org/10.1590/1678-992X-2017-0095
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503455922978816