Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1678-992X-2017-0095 http://hdl.handle.net/11449/164034 |
Resumo: | The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values. |
id |
UNSP_3f4fc8a68d0dad81945b4483e02269c8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164034 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approachSaccharum officinarumsoil respirationgreen sugarcaneclayThe Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values.Univ Rio Verde, ESUCARV, CP 104, BR-75901970 Rio Verde, Go, BrazilEmbrapa Agr Informat, Artificial Intelligence Lab, Av Andre Tosello 209, BR-13083886 Campinas, SP, BrazilUniv Estadual Campinas, FEAGRI, Av Candido Rondon 501, BR-13083875 Campinas, SP, BrazilSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilUniv Sao PaoloUniv Rio VerdeEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Moraes Tavares, Rose LuizaMedeiros Oliveira, Stanley Robson deMartins de Barros, Flavio MargaritoVieira Farhate, Camila VianaSouza, Zigomar Menezes deLa Scala Junior, Newton [UNESP]2018-11-26T17:48:51Z2018-11-26T17:48:51Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article281-287application/pdfhttp://dx.doi.org/10.1590/1678-992X-2017-0095Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018.1678-992Xhttp://hdl.handle.net/11449/16403410.1590/1678-992X-2017-0095S0103-90162018000400281WOS:000428564200002S0103-90162018000400281.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientia Agricolainfo:eu-repo/semantics/openAccess2024-06-06T13:43:44Zoai:repositorio.unesp.br:11449/164034Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-06T13:43:44Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
title |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
spellingShingle |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach Moraes Tavares, Rose Luiza Saccharum officinarum soil respiration green sugarcane clay |
title_short |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
title_full |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
title_fullStr |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
title_full_unstemmed |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
title_sort |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach |
author |
Moraes Tavares, Rose Luiza |
author_facet |
Moraes Tavares, Rose Luiza Medeiros Oliveira, Stanley Robson de Martins de Barros, Flavio Margarito Vieira Farhate, Camila Viana Souza, Zigomar Menezes de La Scala Junior, Newton [UNESP] |
author_role |
author |
author2 |
Medeiros Oliveira, Stanley Robson de Martins de Barros, Flavio Margarito Vieira Farhate, Camila Viana Souza, Zigomar Menezes de La Scala Junior, Newton [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Univ Rio Verde Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Moraes Tavares, Rose Luiza Medeiros Oliveira, Stanley Robson de Martins de Barros, Flavio Margarito Vieira Farhate, Camila Viana Souza, Zigomar Menezes de La Scala Junior, Newton [UNESP] |
dc.subject.por.fl_str_mv |
Saccharum officinarum soil respiration green sugarcane clay |
topic |
Saccharum officinarum soil respiration green sugarcane clay |
description |
The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26T17:48:51Z 2018-11-26T17:48:51Z 2018-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1678-992X-2017-0095 Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018. 1678-992X http://hdl.handle.net/11449/164034 10.1590/1678-992X-2017-0095 S0103-90162018000400281 WOS:000428564200002 S0103-90162018000400281.pdf |
url |
http://dx.doi.org/10.1590/1678-992X-2017-0095 http://hdl.handle.net/11449/164034 |
identifier_str_mv |
Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018. 1678-992X 10.1590/1678-992X-2017-0095 S0103-90162018000400281 WOS:000428564200002 S0103-90162018000400281.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Scientia Agricola |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
281-287 application/pdf |
dc.publisher.none.fl_str_mv |
Univ Sao Paolo |
publisher.none.fl_str_mv |
Univ Sao Paolo |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304465912725504 |