Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

Detalhes bibliográficos
Autor(a) principal: Moraes Tavares, Rose Luiza
Data de Publicação: 2018
Outros Autores: Medeiros Oliveira, Stanley Robson de, Martins de Barros, Flavio Margarito, Vieira Farhate, Camila Viana, Souza, Zigomar Menezes de, La Scala Junior, Newton [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/1678-992X-2017-0095
http://hdl.handle.net/11449/164034
Resumo: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values.
id UNSP_3f4fc8a68d0dad81945b4483e02269c8
oai_identifier_str oai:repositorio.unesp.br:11449/164034
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approachSaccharum officinarumsoil respirationgreen sugarcaneclayThe Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values.Univ Rio Verde, ESUCARV, CP 104, BR-75901970 Rio Verde, Go, BrazilEmbrapa Agr Informat, Artificial Intelligence Lab, Av Andre Tosello 209, BR-13083886 Campinas, SP, BrazilUniv Estadual Campinas, FEAGRI, Av Candido Rondon 501, BR-13083875 Campinas, SP, BrazilSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilUniv Sao PaoloUniv Rio VerdeEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Moraes Tavares, Rose LuizaMedeiros Oliveira, Stanley Robson deMartins de Barros, Flavio MargaritoVieira Farhate, Camila VianaSouza, Zigomar Menezes deLa Scala Junior, Newton [UNESP]2018-11-26T17:48:51Z2018-11-26T17:48:51Z2018-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article281-287application/pdfhttp://dx.doi.org/10.1590/1678-992X-2017-0095Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018.1678-992Xhttp://hdl.handle.net/11449/16403410.1590/1678-992X-2017-0095S0103-90162018000400281WOS:000428564200002S0103-90162018000400281.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientia Agricolainfo:eu-repo/semantics/openAccess2024-06-06T13:43:44Zoai:repositorio.unesp.br:11449/164034Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-06T13:43:44Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
title Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
spellingShingle Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
Moraes Tavares, Rose Luiza
Saccharum officinarum
soil respiration
green sugarcane
clay
title_short Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
title_full Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
title_fullStr Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
title_full_unstemmed Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
title_sort Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
author Moraes Tavares, Rose Luiza
author_facet Moraes Tavares, Rose Luiza
Medeiros Oliveira, Stanley Robson de
Martins de Barros, Flavio Margarito
Vieira Farhate, Camila Viana
Souza, Zigomar Menezes de
La Scala Junior, Newton [UNESP]
author_role author
author2 Medeiros Oliveira, Stanley Robson de
Martins de Barros, Flavio Margarito
Vieira Farhate, Camila Viana
Souza, Zigomar Menezes de
La Scala Junior, Newton [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Rio Verde
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Moraes Tavares, Rose Luiza
Medeiros Oliveira, Stanley Robson de
Martins de Barros, Flavio Margarito
Vieira Farhate, Camila Viana
Souza, Zigomar Menezes de
La Scala Junior, Newton [UNESP]
dc.subject.por.fl_str_mv Saccharum officinarum
soil respiration
green sugarcane
clay
topic Saccharum officinarum
soil respiration
green sugarcane
clay
description The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-26T17:48:51Z
2018-11-26T17:48:51Z
2018-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1678-992X-2017-0095
Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018.
1678-992X
http://hdl.handle.net/11449/164034
10.1590/1678-992X-2017-0095
S0103-90162018000400281
WOS:000428564200002
S0103-90162018000400281.pdf
url http://dx.doi.org/10.1590/1678-992X-2017-0095
http://hdl.handle.net/11449/164034
identifier_str_mv Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018.
1678-992X
10.1590/1678-992X-2017-0095
S0103-90162018000400281
WOS:000428564200002
S0103-90162018000400281.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Scientia Agricola
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 281-287
application/pdf
dc.publisher.none.fl_str_mv Univ Sao Paolo
publisher.none.fl_str_mv Univ Sao Paolo
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826304465912725504