Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.

Detalhes bibliográficos
Autor(a) principal: BISPO, P. da C.
Data de Publicação: 2020
Outros Autores: RODRÍGUEZ-VEIGA, P., ZIMBRES, B., MIRANDA, S. do C. de, CEZARE, C. H. G., FLEMING, S., BALDACCHINO, F., LOUIS, V., RAINS, D., GARCIA, M., ESPIRITO-SANTO, F. D. B., ROITMAN, I., PACHECO-PASCAGAZA, A. M., GOU, Y., ROBERTS, J., BARRETT, K., FERREIRA, L. G., SHIMBO, J. Z., ALENCAR, A., BUSTAMANTE, M., WOODHOUSE, I. H., SANO, E. E., OMETTO, J. P., TANSEY, K., BALZTER, H.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1128070
Resumo: The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1. View Full-Text
id EMBR_6c421572beb585a4f3d4d17df02c3fe9
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1128070
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.BiomassaCerradoSensoriamento RemotoCarbonoThe tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1. View Full-TextEDSON EYJI SANO, CPAC.BISPO, P. da C.RODRÍGUEZ-VEIGA, P.ZIMBRES, B.MIRANDA, S. do C. deCEZARE, C. H. G.FLEMING, S.BALDACCHINO, F.LOUIS, V.RAINS, D.GARCIA, M.ESPIRITO-SANTO, F. D. B.ROITMAN, I.PACHECO-PASCAGAZA, A. M.GOU, Y.ROBERTS, J.BARRETT, K.FERREIRA, L. G.SHIMBO, J. Z.ALENCAR, A.BUSTAMANTE, M.WOODHOUSE, I. H.SANO, E. E.OMETTO, J. P.TANSEY, K.BALZTER, H.2020-12-15T09:04:29Z2020-12-15T09:04:29Z2020-12-142020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRemote Sensing, v. 12, n. 17, 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1128070porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-12-15T09:04:37Zoai:www.alice.cnptia.embrapa.br:doc/1128070Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-12-15T09:04:37falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-12-15T09:04:37Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
title Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
spellingShingle Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
BISPO, P. da C.
Biomassa
Cerrado
Sensoriamento Remoto
Carbono
title_short Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
title_full Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
title_fullStr Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
title_full_unstemmed Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
title_sort Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach.
author BISPO, P. da C.
author_facet BISPO, P. da C.
RODRÍGUEZ-VEIGA, P.
ZIMBRES, B.
MIRANDA, S. do C. de
CEZARE, C. H. G.
FLEMING, S.
BALDACCHINO, F.
LOUIS, V.
RAINS, D.
GARCIA, M.
ESPIRITO-SANTO, F. D. B.
ROITMAN, I.
PACHECO-PASCAGAZA, A. M.
GOU, Y.
ROBERTS, J.
BARRETT, K.
FERREIRA, L. G.
SHIMBO, J. Z.
ALENCAR, A.
BUSTAMANTE, M.
WOODHOUSE, I. H.
SANO, E. E.
OMETTO, J. P.
TANSEY, K.
BALZTER, H.
author_role author
author2 RODRÍGUEZ-VEIGA, P.
ZIMBRES, B.
MIRANDA, S. do C. de
CEZARE, C. H. G.
FLEMING, S.
BALDACCHINO, F.
LOUIS, V.
RAINS, D.
GARCIA, M.
ESPIRITO-SANTO, F. D. B.
ROITMAN, I.
PACHECO-PASCAGAZA, A. M.
GOU, Y.
ROBERTS, J.
BARRETT, K.
FERREIRA, L. G.
SHIMBO, J. Z.
ALENCAR, A.
BUSTAMANTE, M.
WOODHOUSE, I. H.
SANO, E. E.
OMETTO, J. P.
TANSEY, K.
BALZTER, H.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv EDSON EYJI SANO, CPAC.
dc.contributor.author.fl_str_mv BISPO, P. da C.
RODRÍGUEZ-VEIGA, P.
ZIMBRES, B.
MIRANDA, S. do C. de
CEZARE, C. H. G.
FLEMING, S.
BALDACCHINO, F.
LOUIS, V.
RAINS, D.
GARCIA, M.
ESPIRITO-SANTO, F. D. B.
ROITMAN, I.
PACHECO-PASCAGAZA, A. M.
GOU, Y.
ROBERTS, J.
BARRETT, K.
FERREIRA, L. G.
SHIMBO, J. Z.
ALENCAR, A.
BUSTAMANTE, M.
WOODHOUSE, I. H.
SANO, E. E.
OMETTO, J. P.
TANSEY, K.
BALZTER, H.
dc.subject.por.fl_str_mv Biomassa
Cerrado
Sensoriamento Remoto
Carbono
topic Biomassa
Cerrado
Sensoriamento Remoto
Carbono
description The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R2 = 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha−1 and a bias of 0.43 Mg ha−1. View Full-Text
publishDate 2020
dc.date.none.fl_str_mv 2020-12-15T09:04:29Z
2020-12-15T09:04:29Z
2020-12-14
2020
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Remote Sensing, v. 12, n. 17, 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1128070
identifier_str_mv Remote Sensing, v. 12, n. 17, 2020.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1128070
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503499277402112