Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1030362 http://dx.doi.org/10.4238/2015.October.9.10 |
Resumo: | A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs. |
id |
EMBR_721e799a26d30ad4f2d40d2ff7388862 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1030362 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs.Quadrados mínimos parciaisComponente de regressão independenteComponente principal de regressãoComponente principal parcialPartial least squaresIndependent component regressionPrincipal component regressionPartial principal componentA significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.C. F. AZEVEDO, Universidade Federal de Viçosa; M. NASCIMENTO, Universidade Federal de Viçosa; F. F. SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPF; P. S. LOPES, Universidade Federal de Viçosa; S. E. F. GUIMARÃES, Universidade Federal de Viçosa; L. S. GLÓRIA, Universidade Federal de Viçosa.AZEVEDO, C. F.NASCIMENTO, M.SILVA, F. F.RESENDE, M. D. V. deLOPES, P. S.GUIMARÃES, S. E. F.GLÓRIA, L. S.2018-01-03T23:17:59Z2018-01-03T23:17:59Z2015-12-0220152018-01-03T23:17:59Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleGenetics and Molecular Research, Ribeirão Preto, v. 14, n. 4, p. 12217-12227, 2015.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1030362http://dx.doi.org/10.4238/2015.October.9.10enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-01-03T23:18:06Zoai:www.alice.cnptia.embrapa.br:doc/1030362Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-01-03T23:18:06Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
title |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
spellingShingle |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. AZEVEDO, C. F. Quadrados mínimos parciais Componente de regressão independente Componente principal de regressão Componente principal parcial Partial least squares Independent component regression Principal component regression Partial principal component |
title_short |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
title_full |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
title_fullStr |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
title_full_unstemmed |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
title_sort |
Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. |
author |
AZEVEDO, C. F. |
author_facet |
AZEVEDO, C. F. NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de LOPES, P. S. GUIMARÃES, S. E. F. GLÓRIA, L. S. |
author_role |
author |
author2 |
NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de LOPES, P. S. GUIMARÃES, S. E. F. GLÓRIA, L. S. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
C. F. AZEVEDO, Universidade Federal de Viçosa; M. NASCIMENTO, Universidade Federal de Viçosa; F. F. SILVA, Universidade Federal de Viçosa; MARCOS DEON VILELA DE RESENDE, CNPF; P. S. LOPES, Universidade Federal de Viçosa; S. E. F. GUIMARÃES, Universidade Federal de Viçosa; L. S. GLÓRIA, Universidade Federal de Viçosa. |
dc.contributor.author.fl_str_mv |
AZEVEDO, C. F. NASCIMENTO, M. SILVA, F. F. RESENDE, M. D. V. de LOPES, P. S. GUIMARÃES, S. E. F. GLÓRIA, L. S. |
dc.subject.por.fl_str_mv |
Quadrados mínimos parciais Componente de regressão independente Componente principal de regressão Componente principal parcial Partial least squares Independent component regression Principal component regression Partial principal component |
topic |
Quadrados mínimos parciais Componente de regressão independente Componente principal de regressão Componente principal parcial Partial least squares Independent component regression Principal component regression Partial principal component |
description |
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-02 2015 2018-01-03T23:17:59Z 2018-01-03T23:17:59Z 2018-01-03T23:17:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Genetics and Molecular Research, Ribeirão Preto, v. 14, n. 4, p. 12217-12227, 2015. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1030362 http://dx.doi.org/10.4238/2015.October.9.10 |
identifier_str_mv |
Genetics and Molecular Research, Ribeirão Preto, v. 14, n. 4, p. 12217-12227, 2015. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1030362 http://dx.doi.org/10.4238/2015.October.9.10 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695495466778624 |