Determination of optimal number of independent components in yield traits in rice

Detalhes bibliográficos
Autor(a) principal: da Costa,Jaquicele Aparecida
Data de Publicação: 2022
Outros Autores: Azevedo,Camila Ferreira, Nascimento,Moysés, Silva,Fabyano Fonseca e, de Resende,Marcos Deon Vilela, Nascimento,Ana Carolina Campana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Scientia Agrícola (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501
Resumo: ABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.
id USP-18_2e9fafb2649094dd62e97d39abb3c9b8
oai_identifier_str oai:scielo:S0103-90162022000600501
network_acronym_str USP-18
network_name_str Scientia Agrícola (Online)
repository_id_str
spelling Determination of optimal number of independent components in yield traits in riceOryza sativa L.genomic predictionplant breedingprincipal component regressionindependent component regressionABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.Escola Superior de Agricultura "Luiz de Queiroz"2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501Scientia Agricola v.79 n.6 2022reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-992x-2020-0397info:eu-repo/semantics/openAccessda Costa,Jaquicele AparecidaAzevedo,Camila FerreiraNascimento,MoysésSilva,Fabyano Fonseca ede Resende,Marcos Deon VilelaNascimento,Ana Carolina Campanaeng2021-10-29T00:00:00Zoai:scielo:S0103-90162022000600501Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2021-10-29T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Determination of optimal number of independent components in yield traits in rice
title Determination of optimal number of independent components in yield traits in rice
spellingShingle Determination of optimal number of independent components in yield traits in rice
da Costa,Jaquicele Aparecida
Oryza sativa L.
genomic prediction
plant breeding
principal component regression
independent component regression
title_short Determination of optimal number of independent components in yield traits in rice
title_full Determination of optimal number of independent components in yield traits in rice
title_fullStr Determination of optimal number of independent components in yield traits in rice
title_full_unstemmed Determination of optimal number of independent components in yield traits in rice
title_sort Determination of optimal number of independent components in yield traits in rice
author da Costa,Jaquicele Aparecida
author_facet da Costa,Jaquicele Aparecida
Azevedo,Camila Ferreira
Nascimento,Moysés
Silva,Fabyano Fonseca e
de Resende,Marcos Deon Vilela
Nascimento,Ana Carolina Campana
author_role author
author2 Azevedo,Camila Ferreira
Nascimento,Moysés
Silva,Fabyano Fonseca e
de Resende,Marcos Deon Vilela
Nascimento,Ana Carolina Campana
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv da Costa,Jaquicele Aparecida
Azevedo,Camila Ferreira
Nascimento,Moysés
Silva,Fabyano Fonseca e
de Resende,Marcos Deon Vilela
Nascimento,Ana Carolina Campana
dc.subject.por.fl_str_mv Oryza sativa L.
genomic prediction
plant breeding
principal component regression
independent component regression
topic Oryza sativa L.
genomic prediction
plant breeding
principal component regression
independent component regression
description ABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-992x-2020-0397
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
publisher.none.fl_str_mv Escola Superior de Agricultura "Luiz de Queiroz"
dc.source.none.fl_str_mv Scientia Agricola v.79 n.6 2022
reponame:Scientia Agrícola (Online)
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Scientia Agrícola (Online)
collection Scientia Agrícola (Online)
repository.name.fl_str_mv Scientia Agrícola (Online) - Universidade de São Paulo (USP)
repository.mail.fl_str_mv scientia@usp.br||alleoni@usp.br
_version_ 1748936466114805760