Determination of optimal number of independent components in yield traits in rice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Scientia Agrícola (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501 |
Resumo: | ABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values. |
id |
USP-18_2e9fafb2649094dd62e97d39abb3c9b8 |
---|---|
oai_identifier_str |
oai:scielo:S0103-90162022000600501 |
network_acronym_str |
USP-18 |
network_name_str |
Scientia Agrícola (Online) |
repository_id_str |
|
spelling |
Determination of optimal number of independent components in yield traits in riceOryza sativa L.genomic predictionplant breedingprincipal component regressionindependent component regressionABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values.Escola Superior de Agricultura "Luiz de Queiroz"2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501Scientia Agricola v.79 n.6 2022reponame:Scientia Agrícola (Online)instname:Universidade de São Paulo (USP)instacron:USP10.1590/1678-992x-2020-0397info:eu-repo/semantics/openAccessda Costa,Jaquicele AparecidaAzevedo,Camila FerreiraNascimento,MoysésSilva,Fabyano Fonseca ede Resende,Marcos Deon VilelaNascimento,Ana Carolina Campanaeng2021-10-29T00:00:00Zoai:scielo:S0103-90162022000600501Revistahttp://revistas.usp.br/sa/indexPUBhttps://old.scielo.br/oai/scielo-oai.phpscientia@usp.br||alleoni@usp.br1678-992X0103-9016opendoar:2021-10-29T00:00Scientia Agrícola (Online) - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Determination of optimal number of independent components in yield traits in rice |
title |
Determination of optimal number of independent components in yield traits in rice |
spellingShingle |
Determination of optimal number of independent components in yield traits in rice da Costa,Jaquicele Aparecida Oryza sativa L. genomic prediction plant breeding principal component regression independent component regression |
title_short |
Determination of optimal number of independent components in yield traits in rice |
title_full |
Determination of optimal number of independent components in yield traits in rice |
title_fullStr |
Determination of optimal number of independent components in yield traits in rice |
title_full_unstemmed |
Determination of optimal number of independent components in yield traits in rice |
title_sort |
Determination of optimal number of independent components in yield traits in rice |
author |
da Costa,Jaquicele Aparecida |
author_facet |
da Costa,Jaquicele Aparecida Azevedo,Camila Ferreira Nascimento,Moysés Silva,Fabyano Fonseca e de Resende,Marcos Deon Vilela Nascimento,Ana Carolina Campana |
author_role |
author |
author2 |
Azevedo,Camila Ferreira Nascimento,Moysés Silva,Fabyano Fonseca e de Resende,Marcos Deon Vilela Nascimento,Ana Carolina Campana |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
da Costa,Jaquicele Aparecida Azevedo,Camila Ferreira Nascimento,Moysés Silva,Fabyano Fonseca e de Resende,Marcos Deon Vilela Nascimento,Ana Carolina Campana |
dc.subject.por.fl_str_mv |
Oryza sativa L. genomic prediction plant breeding principal component regression independent component regression |
topic |
Oryza sativa L. genomic prediction plant breeding principal component regression independent component regression |
description |
ABSTRACT: The principal component regression (PCR) and the independent component regression (ICR) are dimensionality reduction methods and extremely important in genomic prediction. These methods require the choice of the number of components to be inserted into the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses the number of independent components (ICs) associated to greater accuracy and requires high computational time. In this study, seven criteria based on the number of principal components (PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated in simulated and real data. For both datasets, the most efficient criterion and that drastically reduced computational time determined that the number of ICs should be equal to the number of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated heritability and generated biased genomic values. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162022000600501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-992x-2020-0397 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
publisher.none.fl_str_mv |
Escola Superior de Agricultura "Luiz de Queiroz" |
dc.source.none.fl_str_mv |
Scientia Agricola v.79 n.6 2022 reponame:Scientia Agrícola (Online) instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Scientia Agrícola (Online) |
collection |
Scientia Agrícola (Online) |
repository.name.fl_str_mv |
Scientia Agrícola (Online) - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
scientia@usp.br||alleoni@usp.br |
_version_ |
1748936466114805760 |