Genome prediction accuracy of common bean via Bayesian models.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835 |
Resumo: | We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit. |
id |
EMBR_9a551070d5dcbe1df3e1a5bf4e220659 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1095835 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Genome prediction accuracy of common bean via Bayesian models.Validação cruzadaCross-validationFeijãoPhaseolus VulgarisMarcador MolecularBeansGenetic markersMarker-assisted selectionWe aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.LEIRI DAIANE BARILI, UFV; NAINE MARTINS DO VALE, COODETEC; FABYANO FONSECA E SILVA, UFV; JOSÉ EUSTAQUIO DE SOUZA CARNEIRO, UFV; HINAYAH ROJAS DE OLIVEIRA, UFV; ROSANA PEREIRA VIANELLO, CNPAF; PAULA ARIELLE M RIBEIRO VALDISSER, CNPAF; MOYSES NASCIMENTO, UFV.BARILI, L. D.VALE, N. M. doSILVA, F. R. eCARNEIRO, J. E. de S.OLIVEIRA, H. R. deVIANELLO, R. P.VALDISSER, P. A. M. R.NASCIMENTO, M.2018-09-18T00:41:16Z2018-09-18T00:41:16Z2018-09-1720182018-09-18T00:41:16Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCiência Rural, v. 48, n. 8, e20170497, 2018.1678-4596http://www.alice.cnptia.embrapa.br/alice/handle/doc/109583510.1590/0103-8478cr20170497enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-09-18T00:41:23Zoai:www.alice.cnptia.embrapa.br:doc/1095835Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-09-18T00:41:23Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Genome prediction accuracy of common bean via Bayesian models. |
title |
Genome prediction accuracy of common bean via Bayesian models. |
spellingShingle |
Genome prediction accuracy of common bean via Bayesian models. BARILI, L. D. Validação cruzada Cross-validation Feijão Phaseolus Vulgaris Marcador Molecular Beans Genetic markers Marker-assisted selection |
title_short |
Genome prediction accuracy of common bean via Bayesian models. |
title_full |
Genome prediction accuracy of common bean via Bayesian models. |
title_fullStr |
Genome prediction accuracy of common bean via Bayesian models. |
title_full_unstemmed |
Genome prediction accuracy of common bean via Bayesian models. |
title_sort |
Genome prediction accuracy of common bean via Bayesian models. |
author |
BARILI, L. D. |
author_facet |
BARILI, L. D. VALE, N. M. do SILVA, F. R. e CARNEIRO, J. E. de S. OLIVEIRA, H. R. de VIANELLO, R. P. VALDISSER, P. A. M. R. NASCIMENTO, M. |
author_role |
author |
author2 |
VALE, N. M. do SILVA, F. R. e CARNEIRO, J. E. de S. OLIVEIRA, H. R. de VIANELLO, R. P. VALDISSER, P. A. M. R. NASCIMENTO, M. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
LEIRI DAIANE BARILI, UFV; NAINE MARTINS DO VALE, COODETEC; FABYANO FONSECA E SILVA, UFV; JOSÉ EUSTAQUIO DE SOUZA CARNEIRO, UFV; HINAYAH ROJAS DE OLIVEIRA, UFV; ROSANA PEREIRA VIANELLO, CNPAF; PAULA ARIELLE M RIBEIRO VALDISSER, CNPAF; MOYSES NASCIMENTO, UFV. |
dc.contributor.author.fl_str_mv |
BARILI, L. D. VALE, N. M. do SILVA, F. R. e CARNEIRO, J. E. de S. OLIVEIRA, H. R. de VIANELLO, R. P. VALDISSER, P. A. M. R. NASCIMENTO, M. |
dc.subject.por.fl_str_mv |
Validação cruzada Cross-validation Feijão Phaseolus Vulgaris Marcador Molecular Beans Genetic markers Marker-assisted selection |
topic |
Validação cruzada Cross-validation Feijão Phaseolus Vulgaris Marcador Molecular Beans Genetic markers Marker-assisted selection |
description |
We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-18T00:41:16Z 2018-09-18T00:41:16Z 2018-09-17 2018 2018-09-18T00:41:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Ciência Rural, v. 48, n. 8, e20170497, 2018. 1678-4596 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835 10.1590/0103-8478cr20170497 |
identifier_str_mv |
Ciência Rural, v. 48, n. 8, e20170497, 2018. 1678-4596 10.1590/0103-8478cr20170497 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695525893308416 |