Genome prediction accuracy of common bean via Bayesian models.

Detalhes bibliográficos
Autor(a) principal: BARILI, L. D.
Data de Publicação: 2018
Outros Autores: VALE, N. M. do, SILVA, F. R. e, CARNEIRO, J. E. de S., OLIVEIRA, H. R. de, VIANELLO, R. P., VALDISSER, P. A. M. R., NASCIMENTO, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835
Resumo: We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.
id EMBR_9a551070d5dcbe1df3e1a5bf4e220659
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1095835
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genome prediction accuracy of common bean via Bayesian models.Validação cruzadaCross-validationFeijãoPhaseolus VulgarisMarcador MolecularBeansGenetic markersMarker-assisted selectionWe aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.LEIRI DAIANE BARILI, UFV; NAINE MARTINS DO VALE, COODETEC; FABYANO FONSECA E SILVA, UFV; JOSÉ EUSTAQUIO DE SOUZA CARNEIRO, UFV; HINAYAH ROJAS DE OLIVEIRA, UFV; ROSANA PEREIRA VIANELLO, CNPAF; PAULA ARIELLE M RIBEIRO VALDISSER, CNPAF; MOYSES NASCIMENTO, UFV.BARILI, L. D.VALE, N. M. doSILVA, F. R. eCARNEIRO, J. E. de S.OLIVEIRA, H. R. deVIANELLO, R. P.VALDISSER, P. A. M. R.NASCIMENTO, M.2018-09-18T00:41:16Z2018-09-18T00:41:16Z2018-09-1720182018-09-18T00:41:16Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCiência Rural, v. 48, n. 8, e20170497, 2018.1678-4596http://www.alice.cnptia.embrapa.br/alice/handle/doc/109583510.1590/0103-8478cr20170497enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-09-18T00:41:23Zoai:www.alice.cnptia.embrapa.br:doc/1095835Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-09-18T00:41:23Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genome prediction accuracy of common bean via Bayesian models.
title Genome prediction accuracy of common bean via Bayesian models.
spellingShingle Genome prediction accuracy of common bean via Bayesian models.
BARILI, L. D.
Validação cruzada
Cross-validation
Feijão
Phaseolus Vulgaris
Marcador Molecular
Beans
Genetic markers
Marker-assisted selection
title_short Genome prediction accuracy of common bean via Bayesian models.
title_full Genome prediction accuracy of common bean via Bayesian models.
title_fullStr Genome prediction accuracy of common bean via Bayesian models.
title_full_unstemmed Genome prediction accuracy of common bean via Bayesian models.
title_sort Genome prediction accuracy of common bean via Bayesian models.
author BARILI, L. D.
author_facet BARILI, L. D.
VALE, N. M. do
SILVA, F. R. e
CARNEIRO, J. E. de S.
OLIVEIRA, H. R. de
VIANELLO, R. P.
VALDISSER, P. A. M. R.
NASCIMENTO, M.
author_role author
author2 VALE, N. M. do
SILVA, F. R. e
CARNEIRO, J. E. de S.
OLIVEIRA, H. R. de
VIANELLO, R. P.
VALDISSER, P. A. M. R.
NASCIMENTO, M.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv LEIRI DAIANE BARILI, UFV; NAINE MARTINS DO VALE, COODETEC; FABYANO FONSECA E SILVA, UFV; JOSÉ EUSTAQUIO DE SOUZA CARNEIRO, UFV; HINAYAH ROJAS DE OLIVEIRA, UFV; ROSANA PEREIRA VIANELLO, CNPAF; PAULA ARIELLE M RIBEIRO VALDISSER, CNPAF; MOYSES NASCIMENTO, UFV.
dc.contributor.author.fl_str_mv BARILI, L. D.
VALE, N. M. do
SILVA, F. R. e
CARNEIRO, J. E. de S.
OLIVEIRA, H. R. de
VIANELLO, R. P.
VALDISSER, P. A. M. R.
NASCIMENTO, M.
dc.subject.por.fl_str_mv Validação cruzada
Cross-validation
Feijão
Phaseolus Vulgaris
Marcador Molecular
Beans
Genetic markers
Marker-assisted selection
topic Validação cruzada
Cross-validation
Feijão
Phaseolus Vulgaris
Marcador Molecular
Beans
Genetic markers
Marker-assisted selection
description We aimed to apply genomic information based on SNP (single nucleotide polymorphism) markers for the genetic evaluation of the traits ?stay-green? (SG), plant architecture (PA), grain aspect (GA) and grain yield (GY) in common bean through Bayesian models. These models were compared in terms of prediction accuracy and ability for heritability estimation for each one of the mentioned traits. A total of 80 cultivars were genotyped for 377 SNP markers, whose effects were estimated by five different Bayesian models: Bayes A (BA), B (BB), C (BC), LASSO (BL) e Ridge regression (BRR). Although, prediction accuracies calculated by means of cross-validation have been similar within each trait, the BB model stood out for the trait SG, whereas the BRR was indicated for the remaining traits. The heritability estimates for the traits SG, PA, GA and GY were 0.61, 0.28, 0.32 and 0.29, respectively. In summary, the Bayesian methods applied here were effective and ease to be implemented. The used SNP markers can help in the early selection of promising genotypes, since incorporating genomic information increase the prediction accuracy of the estimated genetic merit.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-18T00:41:16Z
2018-09-18T00:41:16Z
2018-09-17
2018
2018-09-18T00:41:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Ciência Rural, v. 48, n. 8, e20170497, 2018.
1678-4596
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835
10.1590/0103-8478cr20170497
identifier_str_mv Ciência Rural, v. 48, n. 8, e20170497, 2018.
1678-4596
10.1590/0103-8478cr20170497
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095835
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695525893308416