Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097 |
Resumo: | Timber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species. |
id |
EMBR_9c0876c7f72a4ae758e4f1aefbb8c71e |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1095097 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.ModelagemInteligência artificialMadeiraTecnologiaTimber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species.Pamella Carolline Marques dos Reis Reis, UFV; Agostinho Lopes de Souza, UFV; Leonardo Pequeno Reis, Instituto de Desenvolvimento Sustentável Mamirauá; Ana Márcia Macedo Ladeira Carvalho, UFV; LUCAS JOSE MAZZEI DE FREITAS, CPATU; Lyvia Julienne Sousa Rêgo, UFV; Helio Garcia Leite, UFV.REIS, P. C. M. dos R.SOUZA, A. L. deREIS, L. P.CARVALHO, A. M. M. L.FREITAS, L. J. M. deRÊGO, L. J. S.LEITE, H. G.2018-09-06T00:32:52Z2018-09-06T00:32:52Z2018-09-0520182018-09-06T00:32:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMaderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018.http://www.alice.cnptia.embrapa.br/alice/handle/doc/109509710.4067/S0718-221X2018005003501enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-09-06T00:33:00Zoai:www.alice.cnptia.embrapa.br:doc/1095097Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542018-09-06T00:33falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-09-06T00:33Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
title |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
spellingShingle |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. REIS, P. C. M. dos R. Modelagem Inteligência artificial Madeira Tecnologia |
title_short |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
title_full |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
title_fullStr |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
title_full_unstemmed |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
title_sort |
Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood. |
author |
REIS, P. C. M. dos R. |
author_facet |
REIS, P. C. M. dos R. SOUZA, A. L. de REIS, L. P. CARVALHO, A. M. M. L. FREITAS, L. J. M. de RÊGO, L. J. S. LEITE, H. G. |
author_role |
author |
author2 |
SOUZA, A. L. de REIS, L. P. CARVALHO, A. M. M. L. FREITAS, L. J. M. de RÊGO, L. J. S. LEITE, H. G. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Pamella Carolline Marques dos Reis Reis, UFV; Agostinho Lopes de Souza, UFV; Leonardo Pequeno Reis, Instituto de Desenvolvimento Sustentável Mamirauá; Ana Márcia Macedo Ladeira Carvalho, UFV; LUCAS JOSE MAZZEI DE FREITAS, CPATU; Lyvia Julienne Sousa Rêgo, UFV; Helio Garcia Leite, UFV. |
dc.contributor.author.fl_str_mv |
REIS, P. C. M. dos R. SOUZA, A. L. de REIS, L. P. CARVALHO, A. M. M. L. FREITAS, L. J. M. de RÊGO, L. J. S. LEITE, H. G. |
dc.subject.por.fl_str_mv |
Modelagem Inteligência artificial Madeira Tecnologia |
topic |
Modelagem Inteligência artificial Madeira Tecnologia |
description |
Timber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-06T00:32:52Z 2018-09-06T00:32:52Z 2018-09-05 2018 2018-09-06T00:32:52Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Maderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097 10.4067/S0718-221X2018005003501 |
identifier_str_mv |
Maderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018. 10.4067/S0718-221X2018005003501 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503461698535424 |