Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.

Detalhes bibliográficos
Autor(a) principal: REIS, P. C. M. dos R.
Data de Publicação: 2018
Outros Autores: SOUZA, A. L. de, REIS, L. P., CARVALHO, A. M. M. L., FREITAS, L. J. M. de, RÊGO, L. J. S., LEITE, H. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097
Resumo: Timber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species.
id EMBR_9c0876c7f72a4ae758e4f1aefbb8c71e
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1095097
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.ModelagemInteligência artificialMadeiraTecnologiaTimber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species.Pamella Carolline Marques dos Reis Reis, UFV; Agostinho Lopes de Souza, UFV; Leonardo Pequeno Reis, Instituto de Desenvolvimento Sustentável Mamirauá; Ana Márcia Macedo Ladeira Carvalho, UFV; LUCAS JOSE MAZZEI DE FREITAS, CPATU; Lyvia Julienne Sousa Rêgo, UFV; Helio Garcia Leite, UFV.REIS, P. C. M. dos R.SOUZA, A. L. deREIS, L. P.CARVALHO, A. M. M. L.FREITAS, L. J. M. deRÊGO, L. J. S.LEITE, H. G.2018-09-06T00:32:52Z2018-09-06T00:32:52Z2018-09-0520182018-09-06T00:32:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMaderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018.http://www.alice.cnptia.embrapa.br/alice/handle/doc/109509710.4067/S0718-221X2018005003501enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2018-09-06T00:33:00Zoai:www.alice.cnptia.embrapa.br:doc/1095097Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542018-09-06T00:33falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542018-09-06T00:33Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
title Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
spellingShingle Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
REIS, P. C. M. dos R.
Modelagem
Inteligência artificial
Madeira
Tecnologia
title_short Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
title_full Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
title_fullStr Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
title_full_unstemmed Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
title_sort Artificial neural networks to estimate the physical-mechanical properties of amazon second cutting cycle wood.
author REIS, P. C. M. dos R.
author_facet REIS, P. C. M. dos R.
SOUZA, A. L. de
REIS, L. P.
CARVALHO, A. M. M. L.
FREITAS, L. J. M. de
RÊGO, L. J. S.
LEITE, H. G.
author_role author
author2 SOUZA, A. L. de
REIS, L. P.
CARVALHO, A. M. M. L.
FREITAS, L. J. M. de
RÊGO, L. J. S.
LEITE, H. G.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Pamella Carolline Marques dos Reis Reis, UFV; Agostinho Lopes de Souza, UFV; Leonardo Pequeno Reis, Instituto de Desenvolvimento Sustentável Mamirauá; Ana Márcia Macedo Ladeira Carvalho, UFV; LUCAS JOSE MAZZEI DE FREITAS, CPATU; Lyvia Julienne Sousa Rêgo, UFV; Helio Garcia Leite, UFV.
dc.contributor.author.fl_str_mv REIS, P. C. M. dos R.
SOUZA, A. L. de
REIS, L. P.
CARVALHO, A. M. M. L.
FREITAS, L. J. M. de
RÊGO, L. J. S.
LEITE, H. G.
dc.subject.por.fl_str_mv Modelagem
Inteligência artificial
Madeira
Tecnologia
topic Modelagem
Inteligência artificial
Madeira
Tecnologia
description Timber from the second cutting cycle may make up the majority of future crop volumetric. However, there are few studies of the physical and mechanical properties of this timber, which are important to support the consolidation of new species. This study aimed to use Artificial Neural Networks to estimate the physical and mechanical properties of wood from the Amazon, based on basic density. The properties were: shrinkage (tangential, radial and volumetric), static bending, parallel and perpendicular to the fiber compression, parallel and transverse to the fibers, Janka hardness, traction, splitting and shear. The estimate followed the tendency of the data observed for the tangential, radial and volumetric shrinkage. The network estimated the mechanical properties with significant accuracy. Distribution of errors, static bending, parallel compression and perpendicular to the fiber compression also showed significant accuracy. Artificial Neural Networks can be used to estimate the physical and mechanical properties of wood from Amazon species.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-06T00:32:52Z
2018-09-06T00:32:52Z
2018-09-05
2018
2018-09-06T00:32:52Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Maderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097
10.4067/S0718-221X2018005003501
identifier_str_mv Maderas. Ciencia y tecnología, v. 20, n. 3, p. 343-352, 2018.
10.4067/S0718-221X2018005003501
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1095097
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503461698535424