Detecting aquaculture with deep learning in a low-data setting.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305 |
Resumo: | Aquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data. |
id |
EMBR_ac2f8c1efa1823e10c74af7e17fcfe74 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1161305 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Detecting aquaculture with deep learning in a low-data setting.Image segmentationImage classificationAttentionContrastive learningRepresentation learningConvolutinal neural networksSensoriamento RemotoAquiculturaAquacultureRemote sensingDigital imagesNeural networksAquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data.LAURA GREENSTREET, CORNELL UNIVERSITY; JOSHUA FAN, CORNELL UNIVERSITY; FELIPE SIQUEIRA PACHECO, CORNELL UNIVERSITY; YIWEI BAI, CORNELL UNIVERSITY; MARTA EICHEMBERGER UMMUS, CNPASA; CAROLINA DORIA, UNIVERSIDADE FEDERAL DE RONDÔNIA; NATHAN OLIVEIRA BARROS, UNIVERSIDADE FEDERAL DE JUIZ DE FORA; BRUCE R. FORSBERG, INPA; XIANGTAO XU, CORNELL UNIVERSITY; ALEXANDER FLECKER, CORNELL UNIVERSITY; CARLA GOMES, CORNELL UNIVERSITY.GREENSTREET, L.FAN, J.PACHECO, F. S.BAI, Y.UMMUS, M. E.DORIA, C.BARROS, N. O.FORSBERG, B. R.XU, X.FLECKER, A.GOMES, C.2024-01-25T14:32:15Z2024-01-25T14:32:15Z2024-01-252023Artigo em anais e proceedingsinfo:eu-repo/semantics/publishedVersionIn: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-01-25T14:32:15Zoai:www.alice.cnptia.embrapa.br:doc/1161305Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-01-25T14:32:15Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Detecting aquaculture with deep learning in a low-data setting. |
title |
Detecting aquaculture with deep learning in a low-data setting. |
spellingShingle |
Detecting aquaculture with deep learning in a low-data setting. GREENSTREET, L. Image segmentation Image classification Attention Contrastive learning Representation learning Convolutinal neural networks Sensoriamento Remoto Aquicultura Aquaculture Remote sensing Digital images Neural networks |
title_short |
Detecting aquaculture with deep learning in a low-data setting. |
title_full |
Detecting aquaculture with deep learning in a low-data setting. |
title_fullStr |
Detecting aquaculture with deep learning in a low-data setting. |
title_full_unstemmed |
Detecting aquaculture with deep learning in a low-data setting. |
title_sort |
Detecting aquaculture with deep learning in a low-data setting. |
author |
GREENSTREET, L. |
author_facet |
GREENSTREET, L. FAN, J. PACHECO, F. S. BAI, Y. UMMUS, M. E. DORIA, C. BARROS, N. O. FORSBERG, B. R. XU, X. FLECKER, A. GOMES, C. |
author_role |
author |
author2 |
FAN, J. PACHECO, F. S. BAI, Y. UMMUS, M. E. DORIA, C. BARROS, N. O. FORSBERG, B. R. XU, X. FLECKER, A. GOMES, C. |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
LAURA GREENSTREET, CORNELL UNIVERSITY; JOSHUA FAN, CORNELL UNIVERSITY; FELIPE SIQUEIRA PACHECO, CORNELL UNIVERSITY; YIWEI BAI, CORNELL UNIVERSITY; MARTA EICHEMBERGER UMMUS, CNPASA; CAROLINA DORIA, UNIVERSIDADE FEDERAL DE RONDÔNIA; NATHAN OLIVEIRA BARROS, UNIVERSIDADE FEDERAL DE JUIZ DE FORA; BRUCE R. FORSBERG, INPA; XIANGTAO XU, CORNELL UNIVERSITY; ALEXANDER FLECKER, CORNELL UNIVERSITY; CARLA GOMES, CORNELL UNIVERSITY. |
dc.contributor.author.fl_str_mv |
GREENSTREET, L. FAN, J. PACHECO, F. S. BAI, Y. UMMUS, M. E. DORIA, C. BARROS, N. O. FORSBERG, B. R. XU, X. FLECKER, A. GOMES, C. |
dc.subject.por.fl_str_mv |
Image segmentation Image classification Attention Contrastive learning Representation learning Convolutinal neural networks Sensoriamento Remoto Aquicultura Aquaculture Remote sensing Digital images Neural networks |
topic |
Image segmentation Image classification Attention Contrastive learning Representation learning Convolutinal neural networks Sensoriamento Remoto Aquicultura Aquaculture Remote sensing Digital images Neural networks |
description |
Aquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2024-01-25T14:32:15Z 2024-01-25T14:32:15Z 2024-01-25 |
dc.type.driver.fl_str_mv |
Artigo em anais e proceedings |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305 |
identifier_str_mv |
In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695692976553984 |