Detecting aquaculture with deep learning in a low-data setting.

Detalhes bibliográficos
Autor(a) principal: GREENSTREET, L.
Data de Publicação: 2023
Outros Autores: FAN, J., PACHECO, F. S., BAI, Y., UMMUS, M. E., DORIA, C., BARROS, N. O., FORSBERG, B. R., XU, X., FLECKER, A., GOMES, C.
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305
Resumo: Aquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data.
id EMBR_ac2f8c1efa1823e10c74af7e17fcfe74
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1161305
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Detecting aquaculture with deep learning in a low-data setting.Image segmentationImage classificationAttentionContrastive learningRepresentation learningConvolutinal neural networksSensoriamento RemotoAquiculturaAquacultureRemote sensingDigital imagesNeural networksAquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data.LAURA GREENSTREET, CORNELL UNIVERSITY; JOSHUA FAN, CORNELL UNIVERSITY; FELIPE SIQUEIRA PACHECO, CORNELL UNIVERSITY; YIWEI BAI, CORNELL UNIVERSITY; MARTA EICHEMBERGER UMMUS, CNPASA; CAROLINA DORIA, UNIVERSIDADE FEDERAL DE RONDÔNIA; NATHAN OLIVEIRA BARROS, UNIVERSIDADE FEDERAL DE JUIZ DE FORA; BRUCE R. FORSBERG, INPA; XIANGTAO XU, CORNELL UNIVERSITY; ALEXANDER FLECKER, CORNELL UNIVERSITY; CARLA GOMES, CORNELL UNIVERSITY.GREENSTREET, L.FAN, J.PACHECO, F. S.BAI, Y.UMMUS, M. E.DORIA, C.BARROS, N. O.FORSBERG, B. R.XU, X.FLECKER, A.GOMES, C.2024-01-25T14:32:15Z2024-01-25T14:32:15Z2024-01-252023Artigo em anais e proceedingsinfo:eu-repo/semantics/publishedVersionIn: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2024-01-25T14:32:15Zoai:www.alice.cnptia.embrapa.br:doc/1161305Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542024-01-25T14:32:15Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Detecting aquaculture with deep learning in a low-data setting.
title Detecting aquaculture with deep learning in a low-data setting.
spellingShingle Detecting aquaculture with deep learning in a low-data setting.
GREENSTREET, L.
Image segmentation
Image classification
Attention
Contrastive learning
Representation learning
Convolutinal neural networks
Sensoriamento Remoto
Aquicultura
Aquaculture
Remote sensing
Digital images
Neural networks
title_short Detecting aquaculture with deep learning in a low-data setting.
title_full Detecting aquaculture with deep learning in a low-data setting.
title_fullStr Detecting aquaculture with deep learning in a low-data setting.
title_full_unstemmed Detecting aquaculture with deep learning in a low-data setting.
title_sort Detecting aquaculture with deep learning in a low-data setting.
author GREENSTREET, L.
author_facet GREENSTREET, L.
FAN, J.
PACHECO, F. S.
BAI, Y.
UMMUS, M. E.
DORIA, C.
BARROS, N. O.
FORSBERG, B. R.
XU, X.
FLECKER, A.
GOMES, C.
author_role author
author2 FAN, J.
PACHECO, F. S.
BAI, Y.
UMMUS, M. E.
DORIA, C.
BARROS, N. O.
FORSBERG, B. R.
XU, X.
FLECKER, A.
GOMES, C.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv LAURA GREENSTREET, CORNELL UNIVERSITY; JOSHUA FAN, CORNELL UNIVERSITY; FELIPE SIQUEIRA PACHECO, CORNELL UNIVERSITY; YIWEI BAI, CORNELL UNIVERSITY; MARTA EICHEMBERGER UMMUS, CNPASA; CAROLINA DORIA, UNIVERSIDADE FEDERAL DE RONDÔNIA; NATHAN OLIVEIRA BARROS, UNIVERSIDADE FEDERAL DE JUIZ DE FORA; BRUCE R. FORSBERG, INPA; XIANGTAO XU, CORNELL UNIVERSITY; ALEXANDER FLECKER, CORNELL UNIVERSITY; CARLA GOMES, CORNELL UNIVERSITY.
dc.contributor.author.fl_str_mv GREENSTREET, L.
FAN, J.
PACHECO, F. S.
BAI, Y.
UMMUS, M. E.
DORIA, C.
BARROS, N. O.
FORSBERG, B. R.
XU, X.
FLECKER, A.
GOMES, C.
dc.subject.por.fl_str_mv Image segmentation
Image classification
Attention
Contrastive learning
Representation learning
Convolutinal neural networks
Sensoriamento Remoto
Aquicultura
Aquaculture
Remote sensing
Digital images
Neural networks
topic Image segmentation
Image classification
Attention
Contrastive learning
Representation learning
Convolutinal neural networks
Sensoriamento Remoto
Aquicultura
Aquaculture
Remote sensing
Digital images
Neural networks
description Aquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data.
publishDate 2023
dc.date.none.fl_str_mv 2023
2024-01-25T14:32:15Z
2024-01-25T14:32:15Z
2024-01-25
dc.type.driver.fl_str_mv Artigo em anais e proceedings
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305
identifier_str_mv In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695692976553984