Genomic Selection with Allele Dosage in Panicum maximum Jacq.

Detalhes bibliográficos
Autor(a) principal: LARA, L. A. de C.
Data de Publicação: 2019
Outros Autores: SANTOS, M. F., JANK, L., CHIARI, L., VILELA, M. de M., AMADEU, R. R., SANTOS, J. P. R. dos, SILVA, F. G. da, ZENG, Z.-B., GARCIA, A. A. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1117941
Resumo: Genomic selection is an efficient approach to get shorter breeding cycles in recurrent selection programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in diploid species. The major challenge is to distinguish the different types of heterozygotes present in polyploid populations. In this work, we evaluated different genomic prediction models applied to a recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We ,also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotypingby- sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with GS-DD data. However, different predictive models had similar predictive ability performance. In this work, we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that genomic selection may lead to additional gains in recurrent selection program of P. maximum.
id EMBR_ada07bc362c4e1c4002d80c254717d05
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1117941
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genomic Selection with Allele Dosage in Panicum maximum Jacq.Plant breedingGuineaGenotypingPolyploidyGenomicsPredictionGenomic selection is an efficient approach to get shorter breeding cycles in recurrent selection programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in diploid species. The major challenge is to distinguish the different types of heterozygotes present in polyploid populations. In this work, we evaluated different genomic prediction models applied to a recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We ,also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotypingby- sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with GS-DD data. However, different predictive models had similar predictive ability performance. In this work, we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that genomic selection may lead to additional gains in recurrent selection program of P. maximum.Letícia A. de C. Lara, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; MATEUS FIGUEIREDO SANTOS, CNPGC; LIANA JANK, CNPGC; LUCIMARA CHIARI, CNPGC; MARIANE DE MENDONCA VILELA, CNPGC; Rodrigo R. Amadeu, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; Jhonathan P. R. dos Santos, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; FRANCISCO GUILHERME DA SILVA, CNPGL; Zhao-Bang Zeng, North Carolina State University - NCSU; Antonio Augusto F. Garcia, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ.LARA, L. A. de C.SANTOS, M. F.JANK, L.CHIARI, L.VILELA, M. de M.AMADEU, R. R.SANTOS, J. P. R. dosSILVA, F. G. daZENG, Z.-B.GARCIA, A. A. F.2019-12-31T00:38:25Z2019-12-31T00:38:25Z2019-12-3020192019-12-31T00:38:25Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleG3: Genes|Genomes|Genetics, v. 9, p. 2463-2475, August 2019.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1117941enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-12-31T00:38:32Zoai:www.alice.cnptia.embrapa.br:doc/1117941Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-12-31T00:38:32falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-12-31T00:38:32Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genomic Selection with Allele Dosage in Panicum maximum Jacq.
title Genomic Selection with Allele Dosage in Panicum maximum Jacq.
spellingShingle Genomic Selection with Allele Dosage in Panicum maximum Jacq.
LARA, L. A. de C.
Plant breeding
Guinea
Genotyping
Polyploidy
Genomics
Prediction
title_short Genomic Selection with Allele Dosage in Panicum maximum Jacq.
title_full Genomic Selection with Allele Dosage in Panicum maximum Jacq.
title_fullStr Genomic Selection with Allele Dosage in Panicum maximum Jacq.
title_full_unstemmed Genomic Selection with Allele Dosage in Panicum maximum Jacq.
title_sort Genomic Selection with Allele Dosage in Panicum maximum Jacq.
author LARA, L. A. de C.
author_facet LARA, L. A. de C.
SANTOS, M. F.
JANK, L.
CHIARI, L.
VILELA, M. de M.
AMADEU, R. R.
SANTOS, J. P. R. dos
SILVA, F. G. da
ZENG, Z.-B.
GARCIA, A. A. F.
author_role author
author2 SANTOS, M. F.
JANK, L.
CHIARI, L.
VILELA, M. de M.
AMADEU, R. R.
SANTOS, J. P. R. dos
SILVA, F. G. da
ZENG, Z.-B.
GARCIA, A. A. F.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Letícia A. de C. Lara, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; MATEUS FIGUEIREDO SANTOS, CNPGC; LIANA JANK, CNPGC; LUCIMARA CHIARI, CNPGC; MARIANE DE MENDONCA VILELA, CNPGC; Rodrigo R. Amadeu, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; Jhonathan P. R. dos Santos, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ; FRANCISCO GUILHERME DA SILVA, CNPGL; Zhao-Bang Zeng, North Carolina State University - NCSU; Antonio Augusto F. Garcia, Universidade de São Paulo -USP/Faculdade de Agricultura Luiz de Queiroz - ESALQ.
dc.contributor.author.fl_str_mv LARA, L. A. de C.
SANTOS, M. F.
JANK, L.
CHIARI, L.
VILELA, M. de M.
AMADEU, R. R.
SANTOS, J. P. R. dos
SILVA, F. G. da
ZENG, Z.-B.
GARCIA, A. A. F.
dc.subject.por.fl_str_mv Plant breeding
Guinea
Genotyping
Polyploidy
Genomics
Prediction
topic Plant breeding
Guinea
Genotyping
Polyploidy
Genomics
Prediction
description Genomic selection is an efficient approach to get shorter breeding cycles in recurrent selection programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in diploid species. The major challenge is to distinguish the different types of heterozygotes present in polyploid populations. In this work, we evaluated different genomic prediction models applied to a recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We ,also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotypingby- sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with GS-DD data. However, different predictive models had similar predictive ability performance. In this work, we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that genomic selection may lead to additional gains in recurrent selection program of P. maximum.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-31T00:38:25Z
2019-12-31T00:38:25Z
2019-12-30
2019
2019-12-31T00:38:25Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv G3: Genes|Genomes|Genetics, v. 9, p. 2463-2475, August 2019.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1117941
identifier_str_mv G3: Genes|Genomes|Genetics, v. 9, p. 2463-2475, August 2019.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1117941
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503487144329216