Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.

Detalhes bibliográficos
Autor(a) principal: OLIVEIRA, G. F.
Data de Publicação: 2021
Outros Autores: NASCIMENTO, A. C. C., NASCIMENTO, M., SANT'ANNA, I. de C., ROMERO, J. V., AZEVEDO, C. F., BHERING, L. L., CAIXETA, E. T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139325
https://doi.org/10.1371/journal.pone.0243666
Resumo: This study assessed the efficiency of Genomic selection (GS) or genome‐wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.
id EMBR_bf6c48389232e8effe1cb74922536490
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1139325
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.Regressão LinearSeleção GenótipaGenomicsPlant selection guidesPlant breedingThis study assessed the efficiency of Genomic selection (GS) or genome‐wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.GABRIELA FRANÇA OLIVEIRA, UFV; ANA CAROLINA CAMPANA NASCIMENTO, UFV; MOYSÉS NASCIMENTO, UFV; ISABELA DE CASTRO SANT'ANNA, IAC; JUAN VICENTE ROMERO, AGROSAVIA; CAMILA FERREIRA AZEVEDO, UFV; LEONARDO LOPES BHERING, UFV; EVELINE TEIXEIRA CAIXETA MOURA, CNPCa.OLIVEIRA, G. F.NASCIMENTO, A. C. C.NASCIMENTO, M.SANT'ANNA, I. de C.ROMERO, J. V.AZEVEDO, C. F.BHERING, L. L.CAIXETA, E. T.2022-01-26T15:00:24Z2022-01-26T15:00:24Z2022-01-262021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePlos One, v. 16, n. 1, e0243666, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139325https://doi.org/10.1371/journal.pone.0243666enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-01-26T15:00:34Zoai:www.alice.cnptia.embrapa.br:doc/1139325Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-01-26T15:00:34falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-01-26T15:00:34Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
title Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
spellingShingle Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
OLIVEIRA, G. F.
Regressão Linear
Seleção Genótipa
Genomics
Plant selection guides
Plant breeding
title_short Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
title_full Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
title_fullStr Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
title_full_unstemmed Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
title_sort Quantile regression in genomic selection for oligogenic traits in autogamous plants: a simulation study.
author OLIVEIRA, G. F.
author_facet OLIVEIRA, G. F.
NASCIMENTO, A. C. C.
NASCIMENTO, M.
SANT'ANNA, I. de C.
ROMERO, J. V.
AZEVEDO, C. F.
BHERING, L. L.
CAIXETA, E. T.
author_role author
author2 NASCIMENTO, A. C. C.
NASCIMENTO, M.
SANT'ANNA, I. de C.
ROMERO, J. V.
AZEVEDO, C. F.
BHERING, L. L.
CAIXETA, E. T.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv GABRIELA FRANÇA OLIVEIRA, UFV; ANA CAROLINA CAMPANA NASCIMENTO, UFV; MOYSÉS NASCIMENTO, UFV; ISABELA DE CASTRO SANT'ANNA, IAC; JUAN VICENTE ROMERO, AGROSAVIA; CAMILA FERREIRA AZEVEDO, UFV; LEONARDO LOPES BHERING, UFV; EVELINE TEIXEIRA CAIXETA MOURA, CNPCa.
dc.contributor.author.fl_str_mv OLIVEIRA, G. F.
NASCIMENTO, A. C. C.
NASCIMENTO, M.
SANT'ANNA, I. de C.
ROMERO, J. V.
AZEVEDO, C. F.
BHERING, L. L.
CAIXETA, E. T.
dc.subject.por.fl_str_mv Regressão Linear
Seleção Genótipa
Genomics
Plant selection guides
Plant breeding
topic Regressão Linear
Seleção Genótipa
Genomics
Plant selection guides
Plant breeding
description This study assessed the efficiency of Genomic selection (GS) or genome‐wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-01-26T15:00:24Z
2022-01-26T15:00:24Z
2022-01-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Plos One, v. 16, n. 1, e0243666, 2021.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139325
https://doi.org/10.1371/journal.pone.0243666
identifier_str_mv Plos One, v. 16, n. 1, e0243666, 2021.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139325
https://doi.org/10.1371/journal.pone.0243666
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503516882993152