Synthetic biology toolbox for nitrogen-fixing soil microbes.

Detalhes bibliográficos
Autor(a) principal: VENKATARAMAN, M.
Data de Publicação: 2023
Outros Autores: YÑIGEZ-GUTIERREZ, A., INFANTE, V., MACINTYRE, A., FERNANDES JUNIOR, P. I., ANÉ, J.-M., PFLEGER, B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159849
https://doi.org/10.1021/acssynbio.3c00414
Resumo: The soil environment adjacent to plant roots, termed the rhizosphere, is home to a wide variety of microorganisms that can significantly affect the physiology of nearby plants. Microbes in the rhizosphere can provide nutrients, secrete signaling compounds, and inhibit pathogens. These processes could be manipulated with synthetic biology to enhance the agricultural performance of crops grown for food, energy, or environmental remediation, if methods can be implemented in these nonmodel microbes. A common first step for domesticating nonmodel organisms is the development of a set of genetic engineering tools, termed a synthetic biology toolbox. A toolbox comprises transformation protocols, replicating vectors, genome engineering (e.g., CRISPR/Cas9), constitutive and inducible promoter systems, and other gene expression control elements. This work validated synthetic biology toolboxes in three nitrogen-fixing soil bacteria: Azotobacter vinelandii, Stutzerimonas stutzeri (Pseudomonas stutzeri), and a new isolate of Klebsiella variicola. All three organisms were amenable to transformation and reporter protein expression, with several functional inducible systems available for each organism. S. stutzeri and K. variicola showed more reliable plasmid-based expression, resulting in successful Cas9 recombineering to create scarless deletions and insertions. Using these tools, we generated mutants with inducible nitrogenase activity and introduced heterologous genes to produce resorcinol products with relevant biological activity in the rhizosphere.
id EMBR_c083ed36c6a277b14e910fc89ca0f6f8
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1159849
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Synthetic biology toolbox for nitrogen-fixing soil microbes.CRISPRCas9Caixa de ferramentasBiologia sintéticaEdição de genomaSoloNitrogenaseSynthetic biologyGenomeThe soil environment adjacent to plant roots, termed the rhizosphere, is home to a wide variety of microorganisms that can significantly affect the physiology of nearby plants. Microbes in the rhizosphere can provide nutrients, secrete signaling compounds, and inhibit pathogens. These processes could be manipulated with synthetic biology to enhance the agricultural performance of crops grown for food, energy, or environmental remediation, if methods can be implemented in these nonmodel microbes. A common first step for domesticating nonmodel organisms is the development of a set of genetic engineering tools, termed a synthetic biology toolbox. A toolbox comprises transformation protocols, replicating vectors, genome engineering (e.g., CRISPR/Cas9), constitutive and inducible promoter systems, and other gene expression control elements. This work validated synthetic biology toolboxes in three nitrogen-fixing soil bacteria: Azotobacter vinelandii, Stutzerimonas stutzeri (Pseudomonas stutzeri), and a new isolate of Klebsiella variicola. All three organisms were amenable to transformation and reporter protein expression, with several functional inducible systems available for each organism. S. stutzeri and K. variicola showed more reliable plasmid-based expression, resulting in successful Cas9 recombineering to create scarless deletions and insertions. Using these tools, we generated mutants with inducible nitrogenase activity and introduced heterologous genes to produce resorcinol products with relevant biological activity in the rhizosphere.MAYA VENKATARAMANAUDREY YÑIGEZ-GUTIERREZVALENTINA INFANTEAPRIL MACINTYREPAULO IVAN FERNANDES JUNIOR, CPATSAJEAN-MICHEL ANÉBRIAN PFLEGER.VENKATARAMAN, M.YÑIGEZ-GUTIERREZ, A.INFANTE, V.MACINTYRE, A.FERNANDES JUNIOR, P. I.ANÉ, J.-M.PFLEGER, B.2023-12-18T13:32:30Z2023-12-18T13:32:30Z2023-12-182023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleACS Synthetic Biology, v. 12, n. 12, p. 3623-3634, 2023.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159849https://doi.org/10.1021/acssynbio.3c00414enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-12-18T13:32:31Zoai:www.alice.cnptia.embrapa.br:doc/1159849Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-12-18T13:32:31falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-12-18T13:32:31Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Synthetic biology toolbox for nitrogen-fixing soil microbes.
title Synthetic biology toolbox for nitrogen-fixing soil microbes.
spellingShingle Synthetic biology toolbox for nitrogen-fixing soil microbes.
VENKATARAMAN, M.
CRISPR
Cas9
Caixa de ferramentas
Biologia sintética
Edição de genoma
Solo
Nitrogenase
Synthetic biology
Genome
title_short Synthetic biology toolbox for nitrogen-fixing soil microbes.
title_full Synthetic biology toolbox for nitrogen-fixing soil microbes.
title_fullStr Synthetic biology toolbox for nitrogen-fixing soil microbes.
title_full_unstemmed Synthetic biology toolbox for nitrogen-fixing soil microbes.
title_sort Synthetic biology toolbox for nitrogen-fixing soil microbes.
author VENKATARAMAN, M.
author_facet VENKATARAMAN, M.
YÑIGEZ-GUTIERREZ, A.
INFANTE, V.
MACINTYRE, A.
FERNANDES JUNIOR, P. I.
ANÉ, J.-M.
PFLEGER, B.
author_role author
author2 YÑIGEZ-GUTIERREZ, A.
INFANTE, V.
MACINTYRE, A.
FERNANDES JUNIOR, P. I.
ANÉ, J.-M.
PFLEGER, B.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv MAYA VENKATARAMAN
AUDREY YÑIGEZ-GUTIERREZ
VALENTINA INFANTE
APRIL MACINTYRE
PAULO IVAN FERNANDES JUNIOR, CPATSA
JEAN-MICHEL ANÉ
BRIAN PFLEGER.
dc.contributor.author.fl_str_mv VENKATARAMAN, M.
YÑIGEZ-GUTIERREZ, A.
INFANTE, V.
MACINTYRE, A.
FERNANDES JUNIOR, P. I.
ANÉ, J.-M.
PFLEGER, B.
dc.subject.por.fl_str_mv CRISPR
Cas9
Caixa de ferramentas
Biologia sintética
Edição de genoma
Solo
Nitrogenase
Synthetic biology
Genome
topic CRISPR
Cas9
Caixa de ferramentas
Biologia sintética
Edição de genoma
Solo
Nitrogenase
Synthetic biology
Genome
description The soil environment adjacent to plant roots, termed the rhizosphere, is home to a wide variety of microorganisms that can significantly affect the physiology of nearby plants. Microbes in the rhizosphere can provide nutrients, secrete signaling compounds, and inhibit pathogens. These processes could be manipulated with synthetic biology to enhance the agricultural performance of crops grown for food, energy, or environmental remediation, if methods can be implemented in these nonmodel microbes. A common first step for domesticating nonmodel organisms is the development of a set of genetic engineering tools, termed a synthetic biology toolbox. A toolbox comprises transformation protocols, replicating vectors, genome engineering (e.g., CRISPR/Cas9), constitutive and inducible promoter systems, and other gene expression control elements. This work validated synthetic biology toolboxes in three nitrogen-fixing soil bacteria: Azotobacter vinelandii, Stutzerimonas stutzeri (Pseudomonas stutzeri), and a new isolate of Klebsiella variicola. All three organisms were amenable to transformation and reporter protein expression, with several functional inducible systems available for each organism. S. stutzeri and K. variicola showed more reliable plasmid-based expression, resulting in successful Cas9 recombineering to create scarless deletions and insertions. Using these tools, we generated mutants with inducible nitrogenase activity and introduced heterologous genes to produce resorcinol products with relevant biological activity in the rhizosphere.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-18T13:32:30Z
2023-12-18T13:32:30Z
2023-12-18
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ACS Synthetic Biology, v. 12, n. 12, p. 3623-3634, 2023.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159849
https://doi.org/10.1021/acssynbio.3c00414
identifier_str_mv ACS Synthetic Biology, v. 12, n. 12, p. 3623-3634, 2023.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159849
https://doi.org/10.1021/acssynbio.3c00414
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503553962737664