Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.

Detalhes bibliográficos
Autor(a) principal: SIQUEIRA, A. F.
Data de Publicação: 2014
Outros Autores: ORMEÑO-ORRILLO, E., SOUZA, R. C., RODRIGUES, E. P., ALMEIDA, L. G. P., BARCELLOS, F. G., BATISTA, J. S. S., NAKATANI, A. S., MARTÍNEZ-ROMERO, E., VASCONCELOS, A. T. R., HUNGRIA, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/989259
Resumo: The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
id EMBR_da88af695c0ad77193a51e4d2f1ba1ae
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/989259
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.SojaSoybeansThe soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.ARTHUR FERNANDES SIQUEIRA, UEL; ERNESTO ORMEÑO-ORRILLO, Universidad Nacional Autónoma de México; RANGEL CELSO SOUZA, Laboratório Nacional de Computação Científica; ELISETE PAINS RODRIGUES, UEL; LUIZ GONZAGA PAULA ALMEIDA, Laboratório Nacional de Computação Científica; FERNANDO GOMES BARCELLOS, UEL; JESIANE STEFÂNIA SILVA BATISTA, UEPG; ANDRE SHIGUEYOSHI NAKATANI; ESPERANZA MARTÍNEZ-ROMERO, Universidad Nacional Autónoma de México; ANA TEREZA RIBEIRO VASCONCELOS, Laboratório Nacional de Computação Científica; MARIANGELA HUNGRIA DA CUNHA, CNPSO.SIQUEIRA, A. F.ORMEÑO-ORRILLO, E.SOUZA, R. C.RODRIGUES, E. P.ALMEIDA, L. G. P.BARCELLOS, F. G.BATISTA, J. S. S.NAKATANI, A. S.MARTÍNEZ-ROMERO, E.VASCONCELOS, A. T. R.HUNGRIA, M.2014-06-30T11:11:11Z2014-06-30T11:11:11Z2014-06-3020142017-06-19T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20 p.BMC Genomics, v. 15, n. 420, June 2014.1471-2164http://www.alice.cnptia.embrapa.br/alice/handle/doc/98925910.1186/1471-2164-15-420enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T01:59:52Zoai:www.alice.cnptia.embrapa.br:doc/989259Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T01:59:52falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T01:59:52Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
title Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
spellingShingle Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
SIQUEIRA, A. F.
Soja
Soybeans
title_short Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
title_full Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
title_fullStr Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
title_full_unstemmed Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
title_sort Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean.
author SIQUEIRA, A. F.
author_facet SIQUEIRA, A. F.
ORMEÑO-ORRILLO, E.
SOUZA, R. C.
RODRIGUES, E. P.
ALMEIDA, L. G. P.
BARCELLOS, F. G.
BATISTA, J. S. S.
NAKATANI, A. S.
MARTÍNEZ-ROMERO, E.
VASCONCELOS, A. T. R.
HUNGRIA, M.
author_role author
author2 ORMEÑO-ORRILLO, E.
SOUZA, R. C.
RODRIGUES, E. P.
ALMEIDA, L. G. P.
BARCELLOS, F. G.
BATISTA, J. S. S.
NAKATANI, A. S.
MARTÍNEZ-ROMERO, E.
VASCONCELOS, A. T. R.
HUNGRIA, M.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv ARTHUR FERNANDES SIQUEIRA, UEL; ERNESTO ORMEÑO-ORRILLO, Universidad Nacional Autónoma de México; RANGEL CELSO SOUZA, Laboratório Nacional de Computação Científica; ELISETE PAINS RODRIGUES, UEL; LUIZ GONZAGA PAULA ALMEIDA, Laboratório Nacional de Computação Científica; FERNANDO GOMES BARCELLOS, UEL; JESIANE STEFÂNIA SILVA BATISTA, UEPG; ANDRE SHIGUEYOSHI NAKATANI; ESPERANZA MARTÍNEZ-ROMERO, Universidad Nacional Autónoma de México; ANA TEREZA RIBEIRO VASCONCELOS, Laboratório Nacional de Computação Científica; MARIANGELA HUNGRIA DA CUNHA, CNPSO.
dc.contributor.author.fl_str_mv SIQUEIRA, A. F.
ORMEÑO-ORRILLO, E.
SOUZA, R. C.
RODRIGUES, E. P.
ALMEIDA, L. G. P.
BARCELLOS, F. G.
BATISTA, J. S. S.
NAKATANI, A. S.
MARTÍNEZ-ROMERO, E.
VASCONCELOS, A. T. R.
HUNGRIA, M.
dc.subject.por.fl_str_mv Soja
Soybeans
topic Soja
Soybeans
description The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-30T11:11:11Z
2014-06-30T11:11:11Z
2014-06-30
2014
2017-06-19T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv BMC Genomics, v. 15, n. 420, June 2014.
1471-2164
http://www.alice.cnptia.embrapa.br/alice/handle/doc/989259
10.1186/1471-2164-15-420
identifier_str_mv BMC Genomics, v. 15, n. 420, June 2014.
1471-2164
10.1186/1471-2164-15-420
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/989259
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 20 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503391623249920