BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS

Detalhes bibliográficos
Autor(a) principal: Barbosa, Eduardo Campana
Data de Publicação: 2014
Outros Autores: Sáfadi, Thelma, Henrique Osório Silva, Carlos, César Manuli, Rômulo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista do Instituto de Laticínios Cândido Tostes
Texto Completo: https://www.revistadoilct.com.br/rilct/article/view/286
Resumo: The Box Jenkins methodology was used to obtain a statistical model for estimate the production in liters of milk of the 6 first months of 2013 in Minas Gerais state, adjusting SARIMA (p, d, q) x (P, D, Q)s models, where d and D are the number of differences to remove the trend and seasonality of time series, p and q are the order of the autoregressive and moving average operators, P and Q are the order of theautoregressive and moving average seasonal operators and s is the seasonal periodicity.The Akaike Criterion Information (AIC) procedure was used to select the 6 mostparsimonious models and to find the best one the error indicators Mean Squared Error(EQM) and Mean Absolute Percent Error (MAPE) were analyzed, in addition to theassumptions of residues white noise. The Seasonal Autoregressive Integrated MovingAverage SARIMA (3,1,2) x (0,1,2)12 was upper, view of the principle of parsimonyand with more precise estimates. The forecast was more adjusted to the real valuesof milk production in Minas Gerais state and the model had smaller error indicators.The residues estimated were by this model white noise.
id EPAMIG-1_1a8843aee0101b2aa7f0b33ee8be1706
oai_identifier_str oai:oai.rilct.emnuvens.com.br:article/286
network_acronym_str EPAMIG-1
network_name_str Revista do Instituto de Laticínios Cândido Tostes
repository_id_str
spelling BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAISMETODOLOGIA BOX & JENKINS: UMA APLICAÇÃO EM DADOS DE PRODUÇÃO DE LEITE CRU DO ESTADO DE MINAS GERAISforecasting; modeling; trend; seasonalityLaticínios; estatísticaprevisão; modelagem; tendência; sazonalidadeThe Box Jenkins methodology was used to obtain a statistical model for estimate the production in liters of milk of the 6 first months of 2013 in Minas Gerais state, adjusting SARIMA (p, d, q) x (P, D, Q)s models, where d and D are the number of differences to remove the trend and seasonality of time series, p and q are the order of the autoregressive and moving average operators, P and Q are the order of theautoregressive and moving average seasonal operators and s is the seasonal periodicity.The Akaike Criterion Information (AIC) procedure was used to select the 6 mostparsimonious models and to find the best one the error indicators Mean Squared Error(EQM) and Mean Absolute Percent Error (MAPE) were analyzed, in addition to theassumptions of residues white noise. The Seasonal Autoregressive Integrated MovingAverage SARIMA (3,1,2) x (0,1,2)12 was upper, view of the principle of parsimonyand with more precise estimates. The forecast was more adjusted to the real valuesof milk production in Minas Gerais state and the model had smaller error indicators.The residues estimated were by this model white noise.Utilizou-se a metodologia Box Jenkins para obter um modelo estatístico que estimasse a produção de litros de leite dos seis primeiros meses de 2013 no estado de Minas Gerais, ajustando modelos SARIMA (p, d, q) x (P, D, Q)s, no qual d e D são o número de diferenças necessárias para remover a tendência e sazonalidade da série, p e q a ordem dos operadores autoregressivos e de médias móveis, P e Q a ordem dos operadores autoregressivos e de móveis sazonais e s a periodicidade sazonal. Por meio do Critério de Informação de Akaike (AIC) selecionou-se os seis modelos mais parcimoniosos e para encontrar o melhor foram analisados os indicadores Erro Quadrático Médio (EQM) e Erro Percentual Médio Absoluto (MAPE), além das pressuposições de resíduos ruído branco. O modelo Autoregressivo Integrado e de Médias Móveis Sazonal SARIMA (3,1,2) x (0,1,2)12 foi superior, pois atendeu ao princípio da parcimônia, obteve estimativas de produção de leite mais ajustadas e consequentemente menores valores para os indicadores de erro EQM e MAPE. Os resíduos estimados por este modelo foram ruído branco.ILCTBarbosa, Eduardo CampanaSáfadi, ThelmaHenrique Osório Silva, CarlosCésar Manuli, Rômulo2014-05-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistadoilct.com.br/rilct/article/view/28610.14295/2238-6416.v69i2.286Journal of Candido Tostes Dairy Institute; v. 69, n. 2 (2014); 129-139Revista do Instituto de Laticínios Cândido Tostes; v. 69, n. 2 (2014); 129-1392238-64160100-3674reponame:Revista do Instituto de Laticínios Cândido Tostesinstname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)instacron:EPAMIGporhttps://www.revistadoilct.com.br/rilct/article/view/286/299Direitos autorais 2014 Revista do Instituto de Laticínios Cândido Tostesinfo:eu-repo/semantics/openAccess2014-05-20T14:14:56Zoai:oai.rilct.emnuvens.com.br:article/286Revistahttp://www.revistadoilct.com.br/ONGhttps://www.revistadoilct.com.br/rilct/oai||revistadoilct@epamig.br|| revistadoilct@oi.com.br2238-64160100-3674opendoar:2014-05-20T14:14:56Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)false
dc.title.none.fl_str_mv BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
METODOLOGIA BOX & JENKINS: UMA APLICAÇÃO EM DADOS DE PRODUÇÃO DE LEITE CRU DO ESTADO DE MINAS GERAIS
title BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
spellingShingle BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
Barbosa, Eduardo Campana
forecasting; modeling; trend; seasonality
Laticínios; estatística
previsão; modelagem; tendência; sazonalidade
title_short BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
title_full BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
title_fullStr BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
title_full_unstemmed BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
title_sort BOX & JENKINS METHODOLOGY: AN APLICATION IN RAW MILK DATA FROM THE STATE OF MINAS GERAIS
author Barbosa, Eduardo Campana
author_facet Barbosa, Eduardo Campana
Sáfadi, Thelma
Henrique Osório Silva, Carlos
César Manuli, Rômulo
author_role author
author2 Sáfadi, Thelma
Henrique Osório Silva, Carlos
César Manuli, Rômulo
author2_role author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Barbosa, Eduardo Campana
Sáfadi, Thelma
Henrique Osório Silva, Carlos
César Manuli, Rômulo
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv forecasting; modeling; trend; seasonality
Laticínios; estatística
previsão; modelagem; tendência; sazonalidade
topic forecasting; modeling; trend; seasonality
Laticínios; estatística
previsão; modelagem; tendência; sazonalidade
description The Box Jenkins methodology was used to obtain a statistical model for estimate the production in liters of milk of the 6 first months of 2013 in Minas Gerais state, adjusting SARIMA (p, d, q) x (P, D, Q)s models, where d and D are the number of differences to remove the trend and seasonality of time series, p and q are the order of the autoregressive and moving average operators, P and Q are the order of theautoregressive and moving average seasonal operators and s is the seasonal periodicity.The Akaike Criterion Information (AIC) procedure was used to select the 6 mostparsimonious models and to find the best one the error indicators Mean Squared Error(EQM) and Mean Absolute Percent Error (MAPE) were analyzed, in addition to theassumptions of residues white noise. The Seasonal Autoregressive Integrated MovingAverage SARIMA (3,1,2) x (0,1,2)12 was upper, view of the principle of parsimonyand with more precise estimates. The forecast was more adjusted to the real valuesof milk production in Minas Gerais state and the model had smaller error indicators.The residues estimated were by this model white noise.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-05
dc.type.none.fl_str_mv


dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistadoilct.com.br/rilct/article/view/286
10.14295/2238-6416.v69i2.286
url https://www.revistadoilct.com.br/rilct/article/view/286
identifier_str_mv 10.14295/2238-6416.v69i2.286
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.revistadoilct.com.br/rilct/article/view/286/299
dc.rights.driver.fl_str_mv Direitos autorais 2014 Revista do Instituto de Laticínios Cândido Tostes
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2014 Revista do Instituto de Laticínios Cândido Tostes
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ILCT
publisher.none.fl_str_mv ILCT
dc.source.none.fl_str_mv Journal of Candido Tostes Dairy Institute; v. 69, n. 2 (2014); 129-139
Revista do Instituto de Laticínios Cândido Tostes; v. 69, n. 2 (2014); 129-139
2238-6416
0100-3674
reponame:Revista do Instituto de Laticínios Cândido Tostes
instname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
instacron:EPAMIG
instname_str Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
instacron_str EPAMIG
institution EPAMIG
reponame_str Revista do Instituto de Laticínios Cândido Tostes
collection Revista do Instituto de Laticínios Cândido Tostes
repository.name.fl_str_mv Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
repository.mail.fl_str_mv ||revistadoilct@epamig.br|| revistadoilct@oi.com.br
_version_ 1809738130851364864