Automatic detection of thermal damage in grinding process by artificial neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | REM. Revista Escola de Minas (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013 |
Resumo: | This work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB. |
id |
ESCOLADEMINAS-1_2f66e10a6f43e51129b3f91e4ae2c9b5 |
---|---|
oai_identifier_str |
oai:scielo:S0370-44672003000400013 |
network_acronym_str |
ESCOLADEMINAS-1 |
network_name_str |
REM. Revista Escola de Minas (Online) |
repository_id_str |
|
spelling |
Automatic detection of thermal damage in grinding process by artificial neural networkArtificial neural networksdata acquisitiondata processingsignal processingautomationmonitoring control systemsoftware toolsmanufacturing processThis work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB.Escola de Minas2003-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013Rem: Revista Escola de Minas v.56 n.4 2003reponame:REM. Revista Escola de Minas (Online)instname:Escola de Minasinstacron:ESCOLA DE MINAS10.1590/S0370-44672003000400013info:eu-repo/semantics/openAccessDotto,Fábio Romano LofranoAguiar,Paulo Roberto deBianchi,Eduardo CarlosFlauzino,Rogério AndradeCastelhano,Gustavo de OliveiraPansanato,Landryeng2004-04-28T00:00:00Zoai:scielo:S0370-44672003000400013Revistahttp://www.scielo.br/remhttps://old.scielo.br/oai/scielo-oai.phpeditor@rem.com.br1807-03530370-4467opendoar:2004-04-28T00:00REM. Revista Escola de Minas (Online) - Escola de Minasfalse |
dc.title.none.fl_str_mv |
Automatic detection of thermal damage in grinding process by artificial neural network |
title |
Automatic detection of thermal damage in grinding process by artificial neural network |
spellingShingle |
Automatic detection of thermal damage in grinding process by artificial neural network Dotto,Fábio Romano Lofrano Artificial neural networks data acquisition data processing signal processing automation monitoring control system software tools manufacturing process |
title_short |
Automatic detection of thermal damage in grinding process by artificial neural network |
title_full |
Automatic detection of thermal damage in grinding process by artificial neural network |
title_fullStr |
Automatic detection of thermal damage in grinding process by artificial neural network |
title_full_unstemmed |
Automatic detection of thermal damage in grinding process by artificial neural network |
title_sort |
Automatic detection of thermal damage in grinding process by artificial neural network |
author |
Dotto,Fábio Romano Lofrano |
author_facet |
Dotto,Fábio Romano Lofrano Aguiar,Paulo Roberto de Bianchi,Eduardo Carlos Flauzino,Rogério Andrade Castelhano,Gustavo de Oliveira Pansanato,Landry |
author_role |
author |
author2 |
Aguiar,Paulo Roberto de Bianchi,Eduardo Carlos Flauzino,Rogério Andrade Castelhano,Gustavo de Oliveira Pansanato,Landry |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Dotto,Fábio Romano Lofrano Aguiar,Paulo Roberto de Bianchi,Eduardo Carlos Flauzino,Rogério Andrade Castelhano,Gustavo de Oliveira Pansanato,Landry |
dc.subject.por.fl_str_mv |
Artificial neural networks data acquisition data processing signal processing automation monitoring control system software tools manufacturing process |
topic |
Artificial neural networks data acquisition data processing signal processing automation monitoring control system software tools manufacturing process |
description |
This work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0370-44672003000400013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola de Minas |
publisher.none.fl_str_mv |
Escola de Minas |
dc.source.none.fl_str_mv |
Rem: Revista Escola de Minas v.56 n.4 2003 reponame:REM. Revista Escola de Minas (Online) instname:Escola de Minas instacron:ESCOLA DE MINAS |
instname_str |
Escola de Minas |
instacron_str |
ESCOLA DE MINAS |
institution |
ESCOLA DE MINAS |
reponame_str |
REM. Revista Escola de Minas (Online) |
collection |
REM. Revista Escola de Minas (Online) |
repository.name.fl_str_mv |
REM. Revista Escola de Minas (Online) - Escola de Minas |
repository.mail.fl_str_mv |
editor@rem.com.br |
_version_ |
1754122196242923520 |