Automatic detection of thermal damage in grinding process by artificial neural network

Detalhes bibliográficos
Autor(a) principal: Dotto,Fábio Romano Lofrano
Data de Publicação: 2003
Outros Autores: Aguiar,Paulo Roberto de, Bianchi,Eduardo Carlos, Flauzino,Rogério Andrade, Castelhano,Gustavo de Oliveira, Pansanato,Landry
Tipo de documento: Artigo
Idioma: eng
Título da fonte: REM. Revista Escola de Minas (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013
Resumo: This work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB.
id ESCOLADEMINAS-1_2f66e10a6f43e51129b3f91e4ae2c9b5
oai_identifier_str oai:scielo:S0370-44672003000400013
network_acronym_str ESCOLADEMINAS-1
network_name_str REM. Revista Escola de Minas (Online)
repository_id_str
spelling Automatic detection of thermal damage in grinding process by artificial neural networkArtificial neural networksdata acquisitiondata processingsignal processingautomationmonitoring control systemsoftware toolsmanufacturing processThis work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB.Escola de Minas2003-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013Rem: Revista Escola de Minas v.56 n.4 2003reponame:REM. Revista Escola de Minas (Online)instname:Escola de Minasinstacron:ESCOLA DE MINAS10.1590/S0370-44672003000400013info:eu-repo/semantics/openAccessDotto,Fábio Romano LofranoAguiar,Paulo Roberto deBianchi,Eduardo CarlosFlauzino,Rogério AndradeCastelhano,Gustavo de OliveiraPansanato,Landryeng2004-04-28T00:00:00Zoai:scielo:S0370-44672003000400013Revistahttp://www.scielo.br/remhttps://old.scielo.br/oai/scielo-oai.phpeditor@rem.com.br1807-03530370-4467opendoar:2004-04-28T00:00REM. Revista Escola de Minas (Online) - Escola de Minasfalse
dc.title.none.fl_str_mv Automatic detection of thermal damage in grinding process by artificial neural network
title Automatic detection of thermal damage in grinding process by artificial neural network
spellingShingle Automatic detection of thermal damage in grinding process by artificial neural network
Dotto,Fábio Romano Lofrano
Artificial neural networks
data acquisition
data processing
signal processing
automation
monitoring control system
software tools
manufacturing process
title_short Automatic detection of thermal damage in grinding process by artificial neural network
title_full Automatic detection of thermal damage in grinding process by artificial neural network
title_fullStr Automatic detection of thermal damage in grinding process by artificial neural network
title_full_unstemmed Automatic detection of thermal damage in grinding process by artificial neural network
title_sort Automatic detection of thermal damage in grinding process by artificial neural network
author Dotto,Fábio Romano Lofrano
author_facet Dotto,Fábio Romano Lofrano
Aguiar,Paulo Roberto de
Bianchi,Eduardo Carlos
Flauzino,Rogério Andrade
Castelhano,Gustavo de Oliveira
Pansanato,Landry
author_role author
author2 Aguiar,Paulo Roberto de
Bianchi,Eduardo Carlos
Flauzino,Rogério Andrade
Castelhano,Gustavo de Oliveira
Pansanato,Landry
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Dotto,Fábio Romano Lofrano
Aguiar,Paulo Roberto de
Bianchi,Eduardo Carlos
Flauzino,Rogério Andrade
Castelhano,Gustavo de Oliveira
Pansanato,Landry
dc.subject.por.fl_str_mv Artificial neural networks
data acquisition
data processing
signal processing
automation
monitoring control system
software tools
manufacturing process
topic Artificial neural networks
data acquisition
data processing
signal processing
automation
monitoring control system
software tools
manufacturing process
description This work aims to develop an intelligent system for detecting the workpiece burn in the surface grinding process by utilizing a multi-perceptron neural network trained to generalize the process and, in turn, obtnaing the burning threshold. In general, the burning occurrence in grinding process can be detected by the DPO and FKS parameters. However, these ones were not efficient at the grinding conditions used in this work. Acoustic emission and electric power of the grinding wheel drive motor are the input variable and the output variable is the burning occurrence to the neural network. In the experimental work was employed one type of steel (ABNT-1045 annealed) and one type of grinding wheel referred to as TARGA model ART 3TG80.3 NVHB.
publishDate 2003
dc.date.none.fl_str_mv 2003-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672003000400013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0370-44672003000400013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola de Minas
publisher.none.fl_str_mv Escola de Minas
dc.source.none.fl_str_mv Rem: Revista Escola de Minas v.56 n.4 2003
reponame:REM. Revista Escola de Minas (Online)
instname:Escola de Minas
instacron:ESCOLA DE MINAS
instname_str Escola de Minas
instacron_str ESCOLA DE MINAS
institution ESCOLA DE MINAS
reponame_str REM. Revista Escola de Minas (Online)
collection REM. Revista Escola de Minas (Online)
repository.name.fl_str_mv REM. Revista Escola de Minas (Online) - Escola de Minas
repository.mail.fl_str_mv editor@rem.com.br
_version_ 1754122196242923520