Microbiological quality of poultry meat: a review

Detalhes bibliográficos
Autor(a) principal: Mead,GC
Data de Publicação: 2004
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Poultry Science (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-635X2004000300001
Resumo: Poultry meat can be contaminated with a variety of microorganisms, including those capable of spoiling the product during chill storage, and certain foodborne pathogens. Human illness may follow from handling of raw meat, undercooking or mishandling of the cooked product. While Salmonella and Campylobacter spp. remain the organisms of greatest global concern in this respect, others present include the more recently reported Arcobacter and Helicobacter spp. and, occasionally, verotoxigenic Escherichia coli. Also considered here is the growing problem of antimicrobial resistance among poultry-associated pathogens. Because of the need for a systematic and universally applicable approach to food safety control, the Hazard Analysis Critical Control Point (HACCP) concept is increasingly being introduced into the Poultry Industry, and Quantitative Risk Assessment (QRA) is being applied to microbial hazards. Among a number of completed and on-going studies on QRA are those undertaken by FAO/WHO on Salmonella and Campylobacter in broilers. In the case of Campylobacter, however, any QRA must assume at present that all strains have the same pathogenic potential for humans and comparable survival capabilities, even though this is unlikely to be the case. Implementation of the HACCP system in poultry processing plants addresses zoonotic agents that are not detectable by conventional meat inspection procedures and can help to control contamination of carcasses with spoilage organisms. The system brings obvious benefits in optimising plant hygiene, ensuring compliance with legislation and providing evidence of 'due diligence' on the part of the processor. It is now being applied globally in two different situations: in one, such as that occurring in the USA, carcass contamination is clearly reduced as carcasses pass through the process and are finally chilled in super-chlorinated water. There is also the option to use a chemical-rinse treatment for further reduction of microbial contamination. In the second scenario, processors in the EU are not allowed to super-chlorinate process water, and water chilling, which has an important washing effect, is confined to carcasses intended for freezing. Also, chemical decontamination is prohibited until 2006 at the earliest. Therefore, for fresh carcasses that are air chilled, there is presently no marked reduction in carcass contamination and no Critical Control Point at which a significant reduction in pathogen contamination can be guaranteed. Overall, effective control of the organisms is best realised through a farm-to-fork approach at all stages of the supply chain.
id FACTA-1_3a55e24860151cd0a1b02194eee53ae6
oai_identifier_str oai:scielo:S1516-635X2004000300001
network_acronym_str FACTA-1
network_name_str Brazilian Journal of Poultry Science (Online)
repository_id_str
spelling Microbiological quality of poultry meat: a reviewPoultry meatprocessingmicrobial contaminationPoultry meat can be contaminated with a variety of microorganisms, including those capable of spoiling the product during chill storage, and certain foodborne pathogens. Human illness may follow from handling of raw meat, undercooking or mishandling of the cooked product. While Salmonella and Campylobacter spp. remain the organisms of greatest global concern in this respect, others present include the more recently reported Arcobacter and Helicobacter spp. and, occasionally, verotoxigenic Escherichia coli. Also considered here is the growing problem of antimicrobial resistance among poultry-associated pathogens. Because of the need for a systematic and universally applicable approach to food safety control, the Hazard Analysis Critical Control Point (HACCP) concept is increasingly being introduced into the Poultry Industry, and Quantitative Risk Assessment (QRA) is being applied to microbial hazards. Among a number of completed and on-going studies on QRA are those undertaken by FAO/WHO on Salmonella and Campylobacter in broilers. In the case of Campylobacter, however, any QRA must assume at present that all strains have the same pathogenic potential for humans and comparable survival capabilities, even though this is unlikely to be the case. Implementation of the HACCP system in poultry processing plants addresses zoonotic agents that are not detectable by conventional meat inspection procedures and can help to control contamination of carcasses with spoilage organisms. The system brings obvious benefits in optimising plant hygiene, ensuring compliance with legislation and providing evidence of 'due diligence' on the part of the processor. It is now being applied globally in two different situations: in one, such as that occurring in the USA, carcass contamination is clearly reduced as carcasses pass through the process and are finally chilled in super-chlorinated water. There is also the option to use a chemical-rinse treatment for further reduction of microbial contamination. In the second scenario, processors in the EU are not allowed to super-chlorinate process water, and water chilling, which has an important washing effect, is confined to carcasses intended for freezing. Also, chemical decontamination is prohibited until 2006 at the earliest. Therefore, for fresh carcasses that are air chilled, there is presently no marked reduction in carcass contamination and no Critical Control Point at which a significant reduction in pathogen contamination can be guaranteed. Overall, effective control of the organisms is best realised through a farm-to-fork approach at all stages of the supply chain.Fundacao de Apoio a Ciência e Tecnologia Avicolas2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-635X2004000300001Brazilian Journal of Poultry Science v.6 n.3 2004reponame:Brazilian Journal of Poultry Science (Online)instname:Fundação APINCO de Ciência e Tecnologia Avícolas (FACTA)instacron:FACTA10.1590/S1516-635X2004000300001info:eu-repo/semantics/openAccessMead,GCeng2005-01-13T00:00:00Zoai:scielo:S1516-635X2004000300001Revistahttp://www.scielo.br/rbcahttps://old.scielo.br/oai/scielo-oai.php||rvfacta@terra.com.br1806-90611516-635Xopendoar:2005-01-13T00:00Brazilian Journal of Poultry Science (Online) - Fundação APINCO de Ciência e Tecnologia Avícolas (FACTA)false
dc.title.none.fl_str_mv Microbiological quality of poultry meat: a review
title Microbiological quality of poultry meat: a review
spellingShingle Microbiological quality of poultry meat: a review
Mead,GC
Poultry meat
processing
microbial contamination
title_short Microbiological quality of poultry meat: a review
title_full Microbiological quality of poultry meat: a review
title_fullStr Microbiological quality of poultry meat: a review
title_full_unstemmed Microbiological quality of poultry meat: a review
title_sort Microbiological quality of poultry meat: a review
author Mead,GC
author_facet Mead,GC
author_role author
dc.contributor.author.fl_str_mv Mead,GC
dc.subject.por.fl_str_mv Poultry meat
processing
microbial contamination
topic Poultry meat
processing
microbial contamination
description Poultry meat can be contaminated with a variety of microorganisms, including those capable of spoiling the product during chill storage, and certain foodborne pathogens. Human illness may follow from handling of raw meat, undercooking or mishandling of the cooked product. While Salmonella and Campylobacter spp. remain the organisms of greatest global concern in this respect, others present include the more recently reported Arcobacter and Helicobacter spp. and, occasionally, verotoxigenic Escherichia coli. Also considered here is the growing problem of antimicrobial resistance among poultry-associated pathogens. Because of the need for a systematic and universally applicable approach to food safety control, the Hazard Analysis Critical Control Point (HACCP) concept is increasingly being introduced into the Poultry Industry, and Quantitative Risk Assessment (QRA) is being applied to microbial hazards. Among a number of completed and on-going studies on QRA are those undertaken by FAO/WHO on Salmonella and Campylobacter in broilers. In the case of Campylobacter, however, any QRA must assume at present that all strains have the same pathogenic potential for humans and comparable survival capabilities, even though this is unlikely to be the case. Implementation of the HACCP system in poultry processing plants addresses zoonotic agents that are not detectable by conventional meat inspection procedures and can help to control contamination of carcasses with spoilage organisms. The system brings obvious benefits in optimising plant hygiene, ensuring compliance with legislation and providing evidence of 'due diligence' on the part of the processor. It is now being applied globally in two different situations: in one, such as that occurring in the USA, carcass contamination is clearly reduced as carcasses pass through the process and are finally chilled in super-chlorinated water. There is also the option to use a chemical-rinse treatment for further reduction of microbial contamination. In the second scenario, processors in the EU are not allowed to super-chlorinate process water, and water chilling, which has an important washing effect, is confined to carcasses intended for freezing. Also, chemical decontamination is prohibited until 2006 at the earliest. Therefore, for fresh carcasses that are air chilled, there is presently no marked reduction in carcass contamination and no Critical Control Point at which a significant reduction in pathogen contamination can be guaranteed. Overall, effective control of the organisms is best realised through a farm-to-fork approach at all stages of the supply chain.
publishDate 2004
dc.date.none.fl_str_mv 2004-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-635X2004000300001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-635X2004000300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1516-635X2004000300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Fundacao de Apoio a Ciência e Tecnologia Avicolas
publisher.none.fl_str_mv Fundacao de Apoio a Ciência e Tecnologia Avicolas
dc.source.none.fl_str_mv Brazilian Journal of Poultry Science v.6 n.3 2004
reponame:Brazilian Journal of Poultry Science (Online)
instname:Fundação APINCO de Ciência e Tecnologia Avícolas (FACTA)
instacron:FACTA
instname_str Fundação APINCO de Ciência e Tecnologia Avícolas (FACTA)
instacron_str FACTA
institution FACTA
reponame_str Brazilian Journal of Poultry Science (Online)
collection Brazilian Journal of Poultry Science (Online)
repository.name.fl_str_mv Brazilian Journal of Poultry Science (Online) - Fundação APINCO de Ciência e Tecnologia Avícolas (FACTA)
repository.mail.fl_str_mv ||rvfacta@terra.com.br
_version_ 1754122510897512448