Ação antioxidante e propriedades funcionais do morango no organismo humano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Valore (Online) |
Texto Completo: | https://revistavalore.emnuvens.com.br/valore/article/view/246 |
Resumo: | Objetivou-se realizar uma revisão de literatura sobre os potenciais efeitos do consumo de morango e seus compostos em patologias como câncer, diabete mellitus, doenças cardiovasculares, síndrome metabólica, doenças neurológicas e sistema imunológico. Trata-se de uma revisão de literatura de estudos publicados entre 2000 e 2019, indexados nas bases de dados BVS, SciELO, Lilacs, PubMed e ScienceDirect. O potencial anticarcinogênico do morango está associado à capacidade de seus compostos antioxidantes no bloqueio do ciclo celular envolvido na progressão do câncer. No diabetes mellitus, os compostos fenólicos e a vitamina C atuam da redução dos níveis de glicose circulante, devido à capacidade de estimular a secreção de insulina pelas células β pancreáticas. Os compostos fenólicos do morango atuam na redução dos níveis de colesterol total, LDL e triglicerídeos. Assim, conclui-se que o morango é um fruto com elevado potencial preventivo e terapêutico em diversas patologias, o que ressalta a relevância desta revisão para a ciência e comunidade em geral. Ademais, sugere-se a produção de novos ensaios clínicos controlados com humanos, uma vez que observou-se maior número de publicações com testes realizados em animais. |
id |
FASF_aebe9ed816f0f917a4c543f5e4fb562e |
---|---|
oai_identifier_str |
oai:valore.emnuvens.com.br:article/246 |
network_acronym_str |
FASF |
network_name_str |
Revista Valore (Online) |
repository_id_str |
|
spelling |
Ação antioxidante e propriedades funcionais do morango no organismo humanoObjetivou-se realizar uma revisão de literatura sobre os potenciais efeitos do consumo de morango e seus compostos em patologias como câncer, diabete mellitus, doenças cardiovasculares, síndrome metabólica, doenças neurológicas e sistema imunológico. Trata-se de uma revisão de literatura de estudos publicados entre 2000 e 2019, indexados nas bases de dados BVS, SciELO, Lilacs, PubMed e ScienceDirect. O potencial anticarcinogênico do morango está associado à capacidade de seus compostos antioxidantes no bloqueio do ciclo celular envolvido na progressão do câncer. No diabetes mellitus, os compostos fenólicos e a vitamina C atuam da redução dos níveis de glicose circulante, devido à capacidade de estimular a secreção de insulina pelas células β pancreáticas. Os compostos fenólicos do morango atuam na redução dos níveis de colesterol total, LDL e triglicerídeos. Assim, conclui-se que o morango é um fruto com elevado potencial preventivo e terapêutico em diversas patologias, o que ressalta a relevância desta revisão para a ciência e comunidade em geral. Ademais, sugere-se a produção de novos ensaios clínicos controlados com humanos, uma vez que observou-se maior número de publicações com testes realizados em animais.FaSFNunes, GrazielaNovello, Daiana2021-01-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistavalore.emnuvens.com.br/valore/article/view/24610.22408/reva502020246e-5004Revista Valore; v. 5 (2020): Revista Valore; e-50042526-043X2525-900810.22408/reva502020reponame:Revista Valore (Online)instname:Faculdade Sul Fluminense (FASF)instacron:FASFporhttps://revistavalore.emnuvens.com.br/valore/article/view/246/335/*ref*/AARDA. Autoimmune Disease Statistics. Disponível em: <https://www.aarda.org/news-information/statistics/#1488234345468-3bf2d325-1052>. Acesso em: 20 fev. 2018./*ref*/ABDULAZEEZ, S. S.; PONNUSAMY, P. Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats. Pak. J. Pharm. Sci, v. 29, n. 1, p. 255–260, 2016./*ref*/AFRIN, S. et al. Promising health benefits of the strawberry: a focus on clinical studies. J. Agric. Food Chem, v. 64, n. 22, p. 4435–4449, 2016./*ref*/AGATHOCLEOUS, A. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature, v. 549, n. 7673, p. 476–481, 2017./*ref*/AHOLA, A.J. et al. The association between macronutrient intake and the metabolic syndrome and its components in type 1 diabetes. British Journal of Nutrition, v. 117, p. 450–456, 2017./*ref*/ALVAREZ-SUAREZ, J. M. et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem., v. 25, n. 3, p. 289–294, 2014./*ref*/ALVAREZ-SUAREZ, J.M. et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, v. 25, n. 3, p. 289–294, 2014./*ref*/AMINI, A.M.; MUZS, K.; SPENCER, J.P.E.; YAQOOB, P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutrition Research, v. 46, n. 1, p. 88–95, 2017./*ref*/AMINI, A.M.; SPENCER, J.P.E.; YAQOOB, P. Effects of pelargonidin-3-O-glucoside and its metabolites on lipopolysaccharide-stimulated cytokine production by THP-1 monocytes and macrophages. Cytokine, v. 103, n. 1, p. 29–33, 2018./*ref*/ANTUNES, M. C.; CUQUEL, F. L.; ZAWADNEAK, M.A.C.; MOGOR, Á. F.; RESENDE, J.T.V. Postharvest quality of strawberry produced during two consecutive seasons. Horticultura Brasileira, v. 32, n. 2, p. 168–173, 2014./*ref*/ANWAR, S.; FRATANTONIO, D.; FERRARI, D.; SAIJA, A.; CIMINO, F.; SPECIALE, A. Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation. Molecular Medicine Reports, v. 14, n. 2, p. 1397–1403, 2016./*ref*/ARIZA, M. T. et al. Strawberry achenes are an important source of bioactive compounds for human health. International Journal of Molecular Sciences, v. 17, n. 7, p. 1–14, 2016./*ref*/AZEVEDO, C.; CORREIA BRANCO, A.; ARAÚJO, J. R.; GUIMARÃES, J. T.; KEATING, E.; MARTEL, F. The chemopreventive effect of the dietary compound kaempferol on the mcf-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer., v. 67, p. 504–513, 2015./*ref*/BASU, A.; BETTS, N.M.; NGUYEN, A.; NEWMAN, E.D.; FU, D.; LYONS, T. Freeze-Dried Strawberries Lower Serum Cholesterol and Lipid Peroxidation in Adults with Abdominal Adiposity and Elevated Serum Lipids. The Journal of Nutrition, v. 144, n. 6, p. 830–837, 2014./*ref*/BOZONET, S.M.; CARR, A.C.; PULLAR, J.M.; VISSERS, M. Enhanced Human Neutrophil Vitamin C Status, Chemotaxis and Oxidant Generation Following Dietary Supplementation with Vitamin C-Rich SunGold Kiwifruit. Nutrients, v. 7, n. 4, p. 2574–2588, 2015./*ref*/ROSSI, M. et al. Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: a case–control study in Italy. British journal of cancer, v. 109, n. 1, p. 1914–1920, 2013./*ref*/CASSIDY, A.; MUKAMAL, K.J.; LIU, L.; FRANZ, M.; ELIASSEN, A.H.; RIMM, E. B. High Anthocyanin Intake Is Associated With a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women. Circulation, v. 127, n. 2, p. 188–196, 2013./*ref*/CASSIDY, A.; HUANG, T.; RICE, M.S.; RIMM, E.B., TWOROGER, S.S. Intake of dietary flavonoids and risk of epithelial ovarian cancer. The American Journal of Clinical Nutrition, v. 100, n. 5, p. 1344–1351, 2014./*ref*/CHOI, J.; KIM, D.Y.; CHOUE, R.; LIM, H. Effects of Vitamin C Supplementation on Plasma and Urinary Vitamin C Concentration in Korean Women. Clin Nutr Res, v. 6, n. 3, p. 198–205, 2017./*ref*/COSMESCU, A.; FELEA, D. P67 Metabolic syndrome: case report. Archives of Disease in Childhood, v. 102, n. 2, p. A59–A60, 2017./*ref*/COSTA, S. L. et al. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity Research, v. 30, n. 1, p. 41–52, 2016./*ref*/DAVINELLI, S.; BERTOGLIO, J.C.; ZARRELLI, A.; PINA, R.; SCAPAGNINI, G.A Randomized Clinical Trial Evaluating the Efficacyof an Anthocyanin–Maqui Berry Extract (DelphinolÒ)on Oxidative Stress Biomarkers. Journal of the American Collefe of Nutrition, v. 34, n. S1, p. 28–33, 2015./*ref*/DIA, V.P.; BRINGE, N.A.; MEJIA, E.G. Peptides in pepsin-pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem., v. 152, n. 1, p. 423–431, 2014./*ref*/DJURICA, D.; HOLT, R.R.; REN, J.; SHINDEL, A.W.; HACKMAN, R.M.; KEEN, C.L. Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. British Journal of Nutrition, v. 116, n. 04, p. 639–647, 2016./*ref*/DONIN, A.S. et al. Fruit, vegetable and vitamin C intakes and plasma vitamin C: cross-sectional associations with insulin resistance and glycaemia in 9-10 year-old children. Diabetic Medicine, v. 33, n. 3, p. 307–315, 2016./*ref*/DU, H.; LI, L.; CHEN, Z. Fruit Consumption and Cardiovascular Disease in China. The New England Journal of Medicine, v. 375, n. 5, p. 489, 2016./*ref*/DU, H. et al. Fresh Fruit Consumption and Major Cardiovascular Disease in China. New England Journal of Medicine, v. 374, n. 14, p. 1332–1343, 2016./*ref*/ELKHADRAGY, M.F.; AL-OLAYAN, E.M.; AL-AMIERY, A.A.; ABDEL MONEIM, A.E. Protective Effects of Fragaria ananassa Extract Against Cadmium Chloride-Induced Acute Renal Toxicity in Rats. Biological Trace Element Research, v. 181, p. 378–387, 2017./*ref*/FAN, W. et al. Regulatory effects of anesthetics on nitric oxide. Life Sciences, v. 151, p. 76–85, 2016./*ref*/FARIA, A. et al. Flavonoid metabolites transport across a human BBB model. Food Chemistry, v. 149, p. 190–196, 2014../*ref*/FERESIN, R.G. et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: a randomized controlled trial. food & function, v. 8, n. 11, p. 4139–4149, 2017./*ref*/FORBES-HERNANDEZ, T.Y. et al. The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity? Critical Reviews in Food Science and Nutrition, v. 8398, n. October, p. S46–S59, 2015./*ref*/GASPARRINI, M. et al. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food and Chemical Toxicology, v. 102, n. 1, p. 1–10, 2017./*ref*/GIAMPIERI, F. et al. Strawberry as a health promoter: an evidence based review. Food & function, v. 6, n. 5, p. 1386–1398, 2015./*ref*/GIAMPIERI, F. et al. Data on body weight and liver functionality in aged rats fed an enriched strawberry diet. Data in Brief, v. 13, n. 2017, p. 432–436, 2017./*ref*/GIAMPIERI, F. et al. The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, v. 1398, n. 1, p. 62–71, 2017./*ref*/GUARIGUATA, L.; WHITING, D.R.; HAMBLETON, I.; BEAGLEY, J.; LINNENKAMP, U.; SHAW, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., v. 103, n. 2, p. 137–149, 2014./*ref*/HAZAS, M.C.L.L.; MOSELE, J.I.; MACIÀ, A.; LUDWIG, IA.; MOTILVA, M. J. Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells. Journal of Agricultural and Food Chemistry, v. 65, n. 31, p. 6477–6487, 2017./*ref*/HOANG, B.V.; LEE, J.; CHOI, J.; KIM, Y-W.; RYU, K.W.; KIM, J. Effect of dietary vitamin C on gastric cancer risk in the Korean population. World Journal of Gastroenterology, v. 22, n. 27, p. 6257–6267, 2016./*ref*/IBRAHIM, D.S.; EL-MAKSOUD, M.A.E. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. International Journal of Experimental Pathology, v. 96, n. 2, p. 87–93, 2015./*ref*/IGWE, E.O.; CHARLTON, K.E.; ROODENRYS, S.; KENT, K.; FANNING, K.; NETZEL, M.E. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutrition Research, v. 47, n. 1, p. 28–43, 2017./*ref*/INTERNATIONAL DIABETES FEDERATION. IDF Diabetes Atlas. Disponível em: < https://www.idf.org/>. Acesso em: 22 de agosto de 2017./*ref*/ISLAM, M. S. et al. An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells. Oncotarget, v. 8, n. 14, p. 23575–23587, 2017./*ref*/JOSEPH, S.V.; EDIRISINGHE, I.; BURTON-FREEMAN, B. M. Berries: anti-inflammatory effects in humans. J. Agric. Food Chem, v. 62, n. 18, p. 3886–3903, 2014./*ref*/NIMPTSCH, K. et al. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts12. The American Journal of Clinical Nutrition, v. 103, n. 1, p. 184–191, 2016./*ref*/KIM, Y.A.; KEOGH, J.B.; CLIFTON, P.M. Polyphenols and glycémie control. Nutrients, v. 8, n. 1, p. 1–27, 2016./*ref*/KOSINSKA-CAGNAZZO, A.; DIERING, S.; PRIM, D.; ANDLAUER, W. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem., v. 170, n. 1, p. 288–294, 2015./*ref*/LAJOUS, M. et al. Flavonoid intake and incident hypertension in women. American Journal of Clinical Nutrition, v. 103, n. 4, p. 1091–1098, 2016./*ref*/LAMPORT, D.J. et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: A placebo controlled, crossover, acute trial. Psychopharmacology, v. 232, n. 17, p. 3227–3234, 2015./*ref*/LEE, J.H.; SHIN, M.S.; KIM, E.J.; AHN, K.B.; KIM, H. D. The association of dietary vitamin C intake with periodontitis among Korean adults: Results from KNHANES Ⅳ. PLoS ONE, v. 12, n. 5, p. 1–14, 2017./*ref*/LEE, J.H.; SHIN, M.S.; KIM, E.J.; AHN, Y.B.; KIM, H.D. The association of dietary vitamin C intake with periodontitis among Korean adults: Results from KNHANES Ⅳ. PLoS ONE, v. 12, n. 5, p. e0177074, 2017./*ref*/LEE, J.; KIM, J.H. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. PloS one, v. 11, n. 5, p. 1–14, 2016./*ref*/LI, X. et al. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo. Molecular Medicine Reports, v. 13, n. 5, p. 4007–4013, 2016./*ref*/LIN, B.W.; GONG, C.C.; SONG, H. F.; CUI, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, v. 174, n. 11, p. 1226–1243, 2017./*ref*/LIU, C.J.; LIN, J.Y. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. Int. Immunopharmacol., v. 16, p. 165–170, 2013./*ref*/LIU, M. et al. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 37, p. 10238–10244, 2016./*ref*/BASU, A.; LYONS, T.J. Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J. Agric. Food Chem., v. 60, n. 23, p. 687–5692, 2012./*ref*/MAKSIMOVIĆ, J.D.; POLEDICA, M.; MUTAVDŽIĆ, D.; MOJOVIĆ, M.; RADIVOJEVIĆ, D.; MILIVOJEVIĆ, J. Variation in Nutritional Quality and Chemical Composition of Fresh Strawberry Fruit: Combined Effect of Cultivar and Storage. Plant Foods for Human Nutrition, v. 70, n. 1, p. 77–84, 2015./*ref*/MANDAVE, P.; KHADKE, S.; KARANDIKAR, M.; PANDIT, V. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry : A Potent Supplementary Fruit. Int. J. Mol. Sci., v. 18, n. 124, p. 1–22, 2017./*ref*/MARGINA, D.; GRADINARU, D.; MANDA, G.; NEAGOE, I.; ILIE, M. Membranar effects exerted in vitro by polyphenols – quercetin, 3 epigallocatechin gallate and curcumin – on HUVEC and Jurkat cells, 4 relevant for diabetes mellitus. Food and Chemical Toxicology, v. 61, n. 1, p. 86–93, 2013./*ref*/MASTROIACOVO, D. et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study—a randomized controlled trial. American Journal of Clinical Nutritionrican Journal, v. 101, n. 3, p. 538–548, 2015./*ref*/MASTROIACOVO, D. et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects : the Cocoa, Cognition, and Aging ( CoCoA ) Study — a randomized controlled trial. The American journal of clinical nutrition, v. 101, n. 3, p. 538–548, 2014./*ref*/MILLER, V. et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. The Lancet, v. 390, n. 10107, p. 2037–2049, 2017./*ref*/MISRAN, A.; PADMANABHAN, P.; SULLIVAN, J. A.; KHANIZADEH, S.; PALIYATH, G. Composition of phenolics and volatiles in strawberry cultivars and influence of preharvest hexanal treatment on their profiles. Canadian Journal of Plant Science, v. 95, n. 1, p. 115–126, 2015./*ref*/MOHAMMED, B.M. et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. International Wound Journal, v. 13, n. 4, p. 572–584, 2016./*ref*/MONTERO, M.; FUENTE, S.; FONTERIZ, R.; MORENO, A.; ALVAREZ, J. Effects of Long-Term Feeding of the Polyphenols Resveratrol and Kaempferol in Obese Mice. PLoS ONE, v. 9, n. 11, p. e112825, 2014./*ref*/NILSSON, A.; SALO, I.; PLAZA, M.; BJÖRCK, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PloS one, v. 12, n. 11, p. 1–22, 2017./*ref*/O’NEILL, S.; O’DRISCOLL, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews, v. 16, n. 1, p. 1–12, 2015./*ref*/OGAWA, S.; MATSUMAE, T.; KATAOKA, T.; YAZAKI, Y.; YAMAGUCHI, H. Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial. Experimental and therapeutic medicine, v. 5, n. 6, p. 1566–1572, 2013./*ref*/PARK, S.; HAM, J.O.; LEE, B. K. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition, v. 31, n. 1, p. 111–118, 2015./*ref*/PARK E.; EDIRISINGHE I.; WEI H.; VIJAYAKUMAR L.P.; BANASZEWSKI K.; CAPPOZZO J.C., BURTON-FREEMAN, B. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res., v. 60, n. 5, p. 1099–1109, 2016./*ref*/PASE, M.P. et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. Journal of Psychopharmacology, v. 27, n. 5, p. 451–458, 2013./*ref*/POGAČNIK, L. et al. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Research, v. 1651, p. 17–26, 2016./*ref*/PONZO, V. et al. Dietary flavonoid intake and cardiovascular risk: a population-based cohort study. Journal of Translational Medicine, v. 13, n. 1, p. 218, 2015./*ref*/QIU, W. et al. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cellular Physiology and Biochemistry, v. 41, n. 4, p. 1325–1335, 2017./*ref*/REEST, J.V.D.; GOTTLIEB, E. Anti-cancer effects of vitamin C revisited. Cell Research, v. 26, n. 3, p. 269–270, 2016./*ref*/RENDEIRO, C.; RHODES, J.S.; SPENCER, J.P.E. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochemistry International, v. 89, n. 1, p. 126–139, 2015./*ref*/RENÉE, W. et al. Inadequate Vitamin C Status in Prediabetes and Type 2 Diabetes Mellitus: Associations with Glycaemic Control, Obesity, and Smoking. Nutrients, v. 9, n. 9, p. E997, 2017./*ref*/RICHTER, C.K.; SKULAS-RAY, A.C.; GAUGLER, T.L.; LAMBERT, J.D.; PROCTOR, D.N.; KRIS-ETHERTON, P.M. Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: a randomized controlled trial. The American journal of clinical nutrition, v. 105, n. 2, p. 313–322, 2017./*ref*/SBI. Sociedade Brasileira de Imunologia. Disponível em: <http://sbi.org.br/>. Acesso em: 22 de outubro de 2017./*ref*/SHI, N. et al. Strawberry phytochemicals inhibit azoxymethane/ dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 Mice. Nutrients, v. 7, n. 3, p. 1696–1715, 2015./*ref*/SHIVAVEDI, N.; KUMAR, M.; TEJ, G.N.V.C.; NAYAK, P. K. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Research, v. 1, n. 1674, p. 1–9, 2017./*ref*/SKROVANKOVA, S.; SUMCZYNSKI, D.; MLCEK, J.; JURIKOVA, T.; SOCHOR, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci, v. 16, n. 10, p. 24673–24706, 2015./*ref*/SPAGNUOLO, C.; MOCCIA, S.; RUSSO, G. L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, p. 1–11, 2017./*ref*/STULL, A.J. et al. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, v. 7, n. 6, p. 4107–4123, 2015./*ref*/THOMAS, L.D.; ELINDER, C.G.; TISELIUS, H.G.; WOLK, A.; AKESSON, A. Ascorbic Acid Supplements and Kidney Stone Incidence Among Men: A Prospective Study. JAMA Internal Medicine, v. 173, n. 5, p. 386–388, 2013./*ref*/TORRE, L.A.; BRAY, F.; SIEGEL, R.L.; FERLAY, J.; LORTET-TIEULENT, J.; JEMAL, A. Global cancer statistics, 2012. CA-Cancer J. Clin, v. 65, n. 2, p. 87–108, 2015./*ref*/TORRONEN, R.; KOLEHMAINEN, M.; SARKKINEN, E.; POUTANEN, K.; MYKKANEN, H.; NISKANEN, L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J. Nutr., v. 143, n. 4, p. 430–436, 2013./*ref*/TUBEROSO, C.I.G.; BOBAN, M.; BIFULCO, E.; BUDIMIR, D.; PIRISI, F. M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chemistry, v. 140, n. 4, p. 686–691, 2013./*ref*/VEUM, V.L. et al. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. The American journal of clinical nutrition, v. 105, n. 1, p. 85–99, 2017./*ref*/WALLACE, T.C.; SLAVIN, M.; FRANKENFELD, C.L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, v. 8, n. 1, p. 1–13, 2016./*ref*/WANG, J. et al. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Frontiers in Aging Neuroscience, v. 6, n. MAR, p. 1–10, 2014./*ref*/WARD, M.S.; LAMB, J.; JAMES, M.M.; FIONA, E. H. Behavioral and Monoamine changes following severe vitamin C deficiency. J. Neurochem., v. 124, n. 3, p. 365–375, 2013./*ref*/WHO. Cardiovascular diseases (CVDs). Disponível em: <http://www.who.int/mediacentre/factsheets/fs317/en/>. Acesso em: 11 fev. 2018./*ref*/WHO. Atlas: country resources for neurological disorders – 2nd ed. 2. ed. Geneva: World Health Organization, 2017./*ref*/WINK, M. Alkaloids: Toxicology and Health Effects. Oxford: Elsevier, 2016./*ref*/YOUNG, V.; GARZA, C. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. New York: Academic, 2000./*ref*/YUN, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, v. 350, n. 6266, p. 1391–1396, 2015.Direitos autorais 2020 Revista Valoreinfo:eu-repo/semantics/openAccess2021-01-20T03:27:15Zoai:valore.emnuvens.com.br:article/246Revistahttps://revistavalore.emnuvens.com.br/valore/indexPUBhttps://revistavalore.emnuvens.com.br/valore/oai||revistavalore@gmail.com|| marcus.barbosa1979@gmail.com|| felipetriani@gmail.com2526-043X2525-9008opendoar:2021-01-20T03:27:15Revista Valore (Online) - Faculdade Sul Fluminense (FASF)false |
dc.title.none.fl_str_mv |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
title |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
spellingShingle |
Ação antioxidante e propriedades funcionais do morango no organismo humano Nunes, Graziela |
title_short |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
title_full |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
title_fullStr |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
title_full_unstemmed |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
title_sort |
Ação antioxidante e propriedades funcionais do morango no organismo humano |
author |
Nunes, Graziela |
author_facet |
Nunes, Graziela Novello, Daiana |
author_role |
author |
author2 |
Novello, Daiana |
author2_role |
author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Nunes, Graziela Novello, Daiana |
description |
Objetivou-se realizar uma revisão de literatura sobre os potenciais efeitos do consumo de morango e seus compostos em patologias como câncer, diabete mellitus, doenças cardiovasculares, síndrome metabólica, doenças neurológicas e sistema imunológico. Trata-se de uma revisão de literatura de estudos publicados entre 2000 e 2019, indexados nas bases de dados BVS, SciELO, Lilacs, PubMed e ScienceDirect. O potencial anticarcinogênico do morango está associado à capacidade de seus compostos antioxidantes no bloqueio do ciclo celular envolvido na progressão do câncer. No diabetes mellitus, os compostos fenólicos e a vitamina C atuam da redução dos níveis de glicose circulante, devido à capacidade de estimular a secreção de insulina pelas células β pancreáticas. Os compostos fenólicos do morango atuam na redução dos níveis de colesterol total, LDL e triglicerídeos. Assim, conclui-se que o morango é um fruto com elevado potencial preventivo e terapêutico em diversas patologias, o que ressalta a relevância desta revisão para a ciência e comunidade em geral. Ademais, sugere-se a produção de novos ensaios clínicos controlados com humanos, uma vez que observou-se maior número de publicações com testes realizados em animais. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-07 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistavalore.emnuvens.com.br/valore/article/view/246 10.22408/reva502020246e-5004 |
url |
https://revistavalore.emnuvens.com.br/valore/article/view/246 |
identifier_str_mv |
10.22408/reva502020246e-5004 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistavalore.emnuvens.com.br/valore/article/view/246/335 /*ref*/AARDA. Autoimmune Disease Statistics. Disponível em: <https://www.aarda.org/news-information/statistics/#1488234345468-3bf2d325-1052>. Acesso em: 20 fev. 2018. /*ref*/ABDULAZEEZ, S. S.; PONNUSAMY, P. Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats. Pak. J. Pharm. Sci, v. 29, n. 1, p. 255–260, 2016. /*ref*/AFRIN, S. et al. Promising health benefits of the strawberry: a focus on clinical studies. J. Agric. Food Chem, v. 64, n. 22, p. 4435–4449, 2016. /*ref*/AGATHOCLEOUS, A. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature, v. 549, n. 7673, p. 476–481, 2017. /*ref*/AHOLA, A.J. et al. The association between macronutrient intake and the metabolic syndrome and its components in type 1 diabetes. British Journal of Nutrition, v. 117, p. 450–456, 2017. /*ref*/ALVAREZ-SUAREZ, J. M. et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem., v. 25, n. 3, p. 289–294, 2014. /*ref*/ALVAREZ-SUAREZ, J.M. et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, v. 25, n. 3, p. 289–294, 2014. /*ref*/AMINI, A.M.; MUZS, K.; SPENCER, J.P.E.; YAQOOB, P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutrition Research, v. 46, n. 1, p. 88–95, 2017. /*ref*/AMINI, A.M.; SPENCER, J.P.E.; YAQOOB, P. Effects of pelargonidin-3-O-glucoside and its metabolites on lipopolysaccharide-stimulated cytokine production by THP-1 monocytes and macrophages. Cytokine, v. 103, n. 1, p. 29–33, 2018. /*ref*/ANTUNES, M. C.; CUQUEL, F. L.; ZAWADNEAK, M.A.C.; MOGOR, Á. F.; RESENDE, J.T.V. Postharvest quality of strawberry produced during two consecutive seasons. Horticultura Brasileira, v. 32, n. 2, p. 168–173, 2014. /*ref*/ANWAR, S.; FRATANTONIO, D.; FERRARI, D.; SAIJA, A.; CIMINO, F.; SPECIALE, A. Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation. Molecular Medicine Reports, v. 14, n. 2, p. 1397–1403, 2016. /*ref*/ARIZA, M. T. et al. Strawberry achenes are an important source of bioactive compounds for human health. International Journal of Molecular Sciences, v. 17, n. 7, p. 1–14, 2016. /*ref*/AZEVEDO, C.; CORREIA BRANCO, A.; ARAÚJO, J. R.; GUIMARÃES, J. T.; KEATING, E.; MARTEL, F. The chemopreventive effect of the dietary compound kaempferol on the mcf-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer., v. 67, p. 504–513, 2015. /*ref*/BASU, A.; BETTS, N.M.; NGUYEN, A.; NEWMAN, E.D.; FU, D.; LYONS, T. Freeze-Dried Strawberries Lower Serum Cholesterol and Lipid Peroxidation in Adults with Abdominal Adiposity and Elevated Serum Lipids. The Journal of Nutrition, v. 144, n. 6, p. 830–837, 2014. /*ref*/BOZONET, S.M.; CARR, A.C.; PULLAR, J.M.; VISSERS, M. Enhanced Human Neutrophil Vitamin C Status, Chemotaxis and Oxidant Generation Following Dietary Supplementation with Vitamin C-Rich SunGold Kiwifruit. Nutrients, v. 7, n. 4, p. 2574–2588, 2015. /*ref*/ROSSI, M. et al. Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: a case–control study in Italy. British journal of cancer, v. 109, n. 1, p. 1914–1920, 2013. /*ref*/CASSIDY, A.; MUKAMAL, K.J.; LIU, L.; FRANZ, M.; ELIASSEN, A.H.; RIMM, E. B. High Anthocyanin Intake Is Associated With a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women. Circulation, v. 127, n. 2, p. 188–196, 2013. /*ref*/CASSIDY, A.; HUANG, T.; RICE, M.S.; RIMM, E.B., TWOROGER, S.S. Intake of dietary flavonoids and risk of epithelial ovarian cancer. The American Journal of Clinical Nutrition, v. 100, n. 5, p. 1344–1351, 2014. /*ref*/CHOI, J.; KIM, D.Y.; CHOUE, R.; LIM, H. Effects of Vitamin C Supplementation on Plasma and Urinary Vitamin C Concentration in Korean Women. Clin Nutr Res, v. 6, n. 3, p. 198–205, 2017. /*ref*/COSMESCU, A.; FELEA, D. P67 Metabolic syndrome: case report. Archives of Disease in Childhood, v. 102, n. 2, p. A59–A60, 2017. /*ref*/COSTA, S. L. et al. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity Research, v. 30, n. 1, p. 41–52, 2016. /*ref*/DAVINELLI, S.; BERTOGLIO, J.C.; ZARRELLI, A.; PINA, R.; SCAPAGNINI, G.A Randomized Clinical Trial Evaluating the Efficacyof an Anthocyanin–Maqui Berry Extract (DelphinolÒ)on Oxidative Stress Biomarkers. Journal of the American Collefe of Nutrition, v. 34, n. S1, p. 28–33, 2015. /*ref*/DIA, V.P.; BRINGE, N.A.; MEJIA, E.G. Peptides in pepsin-pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem., v. 152, n. 1, p. 423–431, 2014. /*ref*/DJURICA, D.; HOLT, R.R.; REN, J.; SHINDEL, A.W.; HACKMAN, R.M.; KEEN, C.L. Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. British Journal of Nutrition, v. 116, n. 04, p. 639–647, 2016. /*ref*/DONIN, A.S. et al. Fruit, vegetable and vitamin C intakes and plasma vitamin C: cross-sectional associations with insulin resistance and glycaemia in 9-10 year-old children. Diabetic Medicine, v. 33, n. 3, p. 307–315, 2016. /*ref*/DU, H.; LI, L.; CHEN, Z. Fruit Consumption and Cardiovascular Disease in China. The New England Journal of Medicine, v. 375, n. 5, p. 489, 2016. /*ref*/DU, H. et al. Fresh Fruit Consumption and Major Cardiovascular Disease in China. New England Journal of Medicine, v. 374, n. 14, p. 1332–1343, 2016. /*ref*/ELKHADRAGY, M.F.; AL-OLAYAN, E.M.; AL-AMIERY, A.A.; ABDEL MONEIM, A.E. Protective Effects of Fragaria ananassa Extract Against Cadmium Chloride-Induced Acute Renal Toxicity in Rats. Biological Trace Element Research, v. 181, p. 378–387, 2017. /*ref*/FAN, W. et al. Regulatory effects of anesthetics on nitric oxide. Life Sciences, v. 151, p. 76–85, 2016. /*ref*/FARIA, A. et al. Flavonoid metabolites transport across a human BBB model. Food Chemistry, v. 149, p. 190–196, 2014.. /*ref*/FERESIN, R.G. et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: a randomized controlled trial. food & function, v. 8, n. 11, p. 4139–4149, 2017. /*ref*/FORBES-HERNANDEZ, T.Y. et al. The Healthy Effects of Strawberry Polyphenols: Which Strategy behind Antioxidant Capacity? Critical Reviews in Food Science and Nutrition, v. 8398, n. October, p. S46–S59, 2015. /*ref*/GASPARRINI, M. et al. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food and Chemical Toxicology, v. 102, n. 1, p. 1–10, 2017. /*ref*/GIAMPIERI, F. et al. Strawberry as a health promoter: an evidence based review. Food & function, v. 6, n. 5, p. 1386–1398, 2015. /*ref*/GIAMPIERI, F. et al. Data on body weight and liver functionality in aged rats fed an enriched strawberry diet. Data in Brief, v. 13, n. 2017, p. 432–436, 2017. /*ref*/GIAMPIERI, F. et al. The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, v. 1398, n. 1, p. 62–71, 2017. /*ref*/GUARIGUATA, L.; WHITING, D.R.; HAMBLETON, I.; BEAGLEY, J.; LINNENKAMP, U.; SHAW, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., v. 103, n. 2, p. 137–149, 2014. /*ref*/HAZAS, M.C.L.L.; MOSELE, J.I.; MACIÀ, A.; LUDWIG, IA.; MOTILVA, M. J. Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells. Journal of Agricultural and Food Chemistry, v. 65, n. 31, p. 6477–6487, 2017. /*ref*/HOANG, B.V.; LEE, J.; CHOI, J.; KIM, Y-W.; RYU, K.W.; KIM, J. Effect of dietary vitamin C on gastric cancer risk in the Korean population. World Journal of Gastroenterology, v. 22, n. 27, p. 6257–6267, 2016. /*ref*/IBRAHIM, D.S.; EL-MAKSOUD, M.A.E. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. International Journal of Experimental Pathology, v. 96, n. 2, p. 87–93, 2015. /*ref*/IGWE, E.O.; CHARLTON, K.E.; ROODENRYS, S.; KENT, K.; FANNING, K.; NETZEL, M.E. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutrition Research, v. 47, n. 1, p. 28–43, 2017. /*ref*/INTERNATIONAL DIABETES FEDERATION. IDF Diabetes Atlas. Disponível em: < https://www.idf.org/>. Acesso em: 22 de agosto de 2017. /*ref*/ISLAM, M. S. et al. An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells. Oncotarget, v. 8, n. 14, p. 23575–23587, 2017. /*ref*/JOSEPH, S.V.; EDIRISINGHE, I.; BURTON-FREEMAN, B. M. Berries: anti-inflammatory effects in humans. J. Agric. Food Chem, v. 62, n. 18, p. 3886–3903, 2014. /*ref*/NIMPTSCH, K. et al. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts12. The American Journal of Clinical Nutrition, v. 103, n. 1, p. 184–191, 2016. /*ref*/KIM, Y.A.; KEOGH, J.B.; CLIFTON, P.M. Polyphenols and glycémie control. Nutrients, v. 8, n. 1, p. 1–27, 2016. /*ref*/KOSINSKA-CAGNAZZO, A.; DIERING, S.; PRIM, D.; ANDLAUER, W. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem., v. 170, n. 1, p. 288–294, 2015. /*ref*/LAJOUS, M. et al. Flavonoid intake and incident hypertension in women. American Journal of Clinical Nutrition, v. 103, n. 4, p. 1091–1098, 2016. /*ref*/LAMPORT, D.J. et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: A placebo controlled, crossover, acute trial. Psychopharmacology, v. 232, n. 17, p. 3227–3234, 2015. /*ref*/LEE, J.H.; SHIN, M.S.; KIM, E.J.; AHN, K.B.; KIM, H. D. The association of dietary vitamin C intake with periodontitis among Korean adults: Results from KNHANES Ⅳ. PLoS ONE, v. 12, n. 5, p. 1–14, 2017. /*ref*/LEE, J.H.; SHIN, M.S.; KIM, E.J.; AHN, Y.B.; KIM, H.D. The association of dietary vitamin C intake with periodontitis among Korean adults: Results from KNHANES Ⅳ. PLoS ONE, v. 12, n. 5, p. e0177074, 2017. /*ref*/LEE, J.; KIM, J.H. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. PloS one, v. 11, n. 5, p. 1–14, 2016. /*ref*/LI, X. et al. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo. Molecular Medicine Reports, v. 13, n. 5, p. 4007–4013, 2016. /*ref*/LIN, B.W.; GONG, C.C.; SONG, H. F.; CUI, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology, v. 174, n. 11, p. 1226–1243, 2017. /*ref*/LIU, C.J.; LIN, J.Y. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. Int. Immunopharmacol., v. 16, p. 165–170, 2013. /*ref*/LIU, M. et al. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 37, p. 10238–10244, 2016. /*ref*/BASU, A.; LYONS, T.J. Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J. Agric. Food Chem., v. 60, n. 23, p. 687–5692, 2012. /*ref*/MAKSIMOVIĆ, J.D.; POLEDICA, M.; MUTAVDŽIĆ, D.; MOJOVIĆ, M.; RADIVOJEVIĆ, D.; MILIVOJEVIĆ, J. Variation in Nutritional Quality and Chemical Composition of Fresh Strawberry Fruit: Combined Effect of Cultivar and Storage. Plant Foods for Human Nutrition, v. 70, n. 1, p. 77–84, 2015. /*ref*/MANDAVE, P.; KHADKE, S.; KARANDIKAR, M.; PANDIT, V. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry : A Potent Supplementary Fruit. Int. J. Mol. Sci., v. 18, n. 124, p. 1–22, 2017. /*ref*/MARGINA, D.; GRADINARU, D.; MANDA, G.; NEAGOE, I.; ILIE, M. Membranar effects exerted in vitro by polyphenols – quercetin, 3 epigallocatechin gallate and curcumin – on HUVEC and Jurkat cells, 4 relevant for diabetes mellitus. Food and Chemical Toxicology, v. 61, n. 1, p. 86–93, 2013. /*ref*/MASTROIACOVO, D. et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study—a randomized controlled trial. American Journal of Clinical Nutritionrican Journal, v. 101, n. 3, p. 538–548, 2015. /*ref*/MASTROIACOVO, D. et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects : the Cocoa, Cognition, and Aging ( CoCoA ) Study — a randomized controlled trial. The American journal of clinical nutrition, v. 101, n. 3, p. 538–548, 2014. /*ref*/MILLER, V. et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. The Lancet, v. 390, n. 10107, p. 2037–2049, 2017. /*ref*/MISRAN, A.; PADMANABHAN, P.; SULLIVAN, J. A.; KHANIZADEH, S.; PALIYATH, G. Composition of phenolics and volatiles in strawberry cultivars and influence of preharvest hexanal treatment on their profiles. Canadian Journal of Plant Science, v. 95, n. 1, p. 115–126, 2015. /*ref*/MOHAMMED, B.M. et al. Vitamin C promotes wound healing through novel pleiotropic mechanisms. International Wound Journal, v. 13, n. 4, p. 572–584, 2016. /*ref*/MONTERO, M.; FUENTE, S.; FONTERIZ, R.; MORENO, A.; ALVAREZ, J. Effects of Long-Term Feeding of the Polyphenols Resveratrol and Kaempferol in Obese Mice. PLoS ONE, v. 9, n. 11, p. e112825, 2014. /*ref*/NILSSON, A.; SALO, I.; PLAZA, M.; BJÖRCK, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PloS one, v. 12, n. 11, p. 1–22, 2017. /*ref*/O’NEILL, S.; O’DRISCOLL, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews, v. 16, n. 1, p. 1–12, 2015. /*ref*/OGAWA, S.; MATSUMAE, T.; KATAOKA, T.; YAZAKI, Y.; YAMAGUCHI, H. Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial. Experimental and therapeutic medicine, v. 5, n. 6, p. 1566–1572, 2013. /*ref*/PARK, S.; HAM, J.O.; LEE, B. K. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition, v. 31, n. 1, p. 111–118, 2015. /*ref*/PARK E.; EDIRISINGHE I.; WEI H.; VIJAYAKUMAR L.P.; BANASZEWSKI K.; CAPPOZZO J.C., BURTON-FREEMAN, B. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res., v. 60, n. 5, p. 1099–1109, 2016. /*ref*/PASE, M.P. et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. Journal of Psychopharmacology, v. 27, n. 5, p. 451–458, 2013. /*ref*/POGAČNIK, L. et al. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Research, v. 1651, p. 17–26, 2016. /*ref*/PONZO, V. et al. Dietary flavonoid intake and cardiovascular risk: a population-based cohort study. Journal of Translational Medicine, v. 13, n. 1, p. 218, 2015. /*ref*/QIU, W. et al. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer. Cellular Physiology and Biochemistry, v. 41, n. 4, p. 1325–1335, 2017. /*ref*/REEST, J.V.D.; GOTTLIEB, E. Anti-cancer effects of vitamin C revisited. Cell Research, v. 26, n. 3, p. 269–270, 2016. /*ref*/RENDEIRO, C.; RHODES, J.S.; SPENCER, J.P.E. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochemistry International, v. 89, n. 1, p. 126–139, 2015. /*ref*/RENÉE, W. et al. Inadequate Vitamin C Status in Prediabetes and Type 2 Diabetes Mellitus: Associations with Glycaemic Control, Obesity, and Smoking. Nutrients, v. 9, n. 9, p. E997, 2017. /*ref*/RICHTER, C.K.; SKULAS-RAY, A.C.; GAUGLER, T.L.; LAMBERT, J.D.; PROCTOR, D.N.; KRIS-ETHERTON, P.M. Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: a randomized controlled trial. The American journal of clinical nutrition, v. 105, n. 2, p. 313–322, 2017. /*ref*/SBI. Sociedade Brasileira de Imunologia. Disponível em: <http://sbi.org.br/>. Acesso em: 22 de outubro de 2017. /*ref*/SHI, N. et al. Strawberry phytochemicals inhibit azoxymethane/ dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 Mice. Nutrients, v. 7, n. 3, p. 1696–1715, 2015. /*ref*/SHIVAVEDI, N.; KUMAR, M.; TEJ, G.N.V.C.; NAYAK, P. K. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Research, v. 1, n. 1674, p. 1–9, 2017. /*ref*/SKROVANKOVA, S.; SUMCZYNSKI, D.; MLCEK, J.; JURIKOVA, T.; SOCHOR, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci, v. 16, n. 10, p. 24673–24706, 2015. /*ref*/SPAGNUOLO, C.; MOCCIA, S.; RUSSO, G. L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, p. 1–11, 2017. /*ref*/STULL, A.J. et al. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, v. 7, n. 6, p. 4107–4123, 2015. /*ref*/THOMAS, L.D.; ELINDER, C.G.; TISELIUS, H.G.; WOLK, A.; AKESSON, A. Ascorbic Acid Supplements and Kidney Stone Incidence Among Men: A Prospective Study. JAMA Internal Medicine, v. 173, n. 5, p. 386–388, 2013. /*ref*/TORRE, L.A.; BRAY, F.; SIEGEL, R.L.; FERLAY, J.; LORTET-TIEULENT, J.; JEMAL, A. Global cancer statistics, 2012. CA-Cancer J. Clin, v. 65, n. 2, p. 87–108, 2015. /*ref*/TORRONEN, R.; KOLEHMAINEN, M.; SARKKINEN, E.; POUTANEN, K.; MYKKANEN, H.; NISKANEN, L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J. Nutr., v. 143, n. 4, p. 430–436, 2013. /*ref*/TUBEROSO, C.I.G.; BOBAN, M.; BIFULCO, E.; BUDIMIR, D.; PIRISI, F. M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chemistry, v. 140, n. 4, p. 686–691, 2013. /*ref*/VEUM, V.L. et al. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. The American journal of clinical nutrition, v. 105, n. 1, p. 85–99, 2017. /*ref*/WALLACE, T.C.; SLAVIN, M.; FRANKENFELD, C.L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients, v. 8, n. 1, p. 1–13, 2016. /*ref*/WANG, J. et al. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Frontiers in Aging Neuroscience, v. 6, n. MAR, p. 1–10, 2014. /*ref*/WARD, M.S.; LAMB, J.; JAMES, M.M.; FIONA, E. H. Behavioral and Monoamine changes following severe vitamin C deficiency. J. Neurochem., v. 124, n. 3, p. 365–375, 2013. /*ref*/WHO. Cardiovascular diseases (CVDs). Disponível em: <http://www.who.int/mediacentre/factsheets/fs317/en/>. Acesso em: 11 fev. 2018. /*ref*/WHO. Atlas: country resources for neurological disorders – 2nd ed. 2. ed. Geneva: World Health Organization, 2017. /*ref*/WINK, M. Alkaloids: Toxicology and Health Effects. Oxford: Elsevier, 2016. /*ref*/YOUNG, V.; GARZA, C. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. New York: Academic, 2000. /*ref*/YUN, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, v. 350, n. 6266, p. 1391–1396, 2015. |
dc.rights.driver.fl_str_mv |
Direitos autorais 2020 Revista Valore info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2020 Revista Valore |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
FaSF |
publisher.none.fl_str_mv |
FaSF |
dc.source.none.fl_str_mv |
Revista Valore; v. 5 (2020): Revista Valore; e-5004 2526-043X 2525-9008 10.22408/reva502020 reponame:Revista Valore (Online) instname:Faculdade Sul Fluminense (FASF) instacron:FASF |
instname_str |
Faculdade Sul Fluminense (FASF) |
instacron_str |
FASF |
institution |
FASF |
reponame_str |
Revista Valore (Online) |
collection |
Revista Valore (Online) |
repository.name.fl_str_mv |
Revista Valore (Online) - Faculdade Sul Fluminense (FASF) |
repository.mail.fl_str_mv |
||revistavalore@gmail.com|| marcus.barbosa1979@gmail.com|| felipetriani@gmail.com |
_version_ |
1798321569261420544 |