Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço

Detalhes bibliográficos
Autor(a) principal: Moreira, C. L.
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da FEI
Texto Completo: https://doi.org/10.31414/EE.2021.D.131377
https://repositorio.fei.edu.br/handle/FEI/3445
Resumo: As tecnologias 5G possibilitaram novas aplicações em uma infraestrutura de computação de borda que visa atender uma demanda heterogênea e distribuída que unifica hardware, rede e software voltados para habilitação digital. Baseada nos requisitos da Indústria 4.0, esta infraestrutura habilitadora introduz o conceito de fatiamento da rede (Network Slicing), um recurso fundamental que transforma a rede de um paradigma estático em um novo paradigma onde as redes são lógicas, utilizando o modelo de compartilhamento de computação em nuvem e névoa, que deve atender às necessidades de acordos de nível de serviço de forma conveniente e otimizada, exigindo um mecanismo de orquestração para a alocação dinâmica de recursos. Entre esses mecanismos, a incorporação de redes virtuais (VNE) e o gerenciamento dinâmico de recursos (DRM) têm mostrado uma maneira de definir onde e como a tecnologia de computação em névoa deve ser usada. Este trabalho propõe um algoritmo de alocação de recursos, o VNE_CRS, que utiliza uma técnica de inteligência artificial chamada aprendizado por reforço para orquestrar múltiplos domínios da infraestrutura de uma rede 5G, beneficiandose de sua característica de considerar todo o problema, fim a fim, utilizando diferentes aspectos do Indice de Qualidade de Serviço 5G (5QIs). Experimentos foram realizados em simulação comparando o VNE_CRS com algoritmos do estado da arte para alocação VNE em ambiente Edge de múltiplos domínios. Os resultados mostraram que o uso de técnicas de aprendizado por reforço para alocação de recursos de VNE apresentou ganhos de desempenho. Ele pode não apenas simplificar a arquitetura VNE, mas também atuar como um sistema de orquestração completo que visa os resultados estratégicos de longo prazo
id FEI_de8acf8e6680051b9a0287ff7277c0a7
oai_identifier_str oai:repositorio.fei.edu.br:FEI/3445
network_acronym_str FEI
network_name_str Biblioteca Digital de Teses e Dissertações da FEI
repository_id_str https://repositorio.fei.edu.br/oai/request
spelling Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforçoaprendizado por reforçoredes de quinta geraçãofatiamento de redealocação de redes virtuaiscomputação de bordaAs tecnologias 5G possibilitaram novas aplicações em uma infraestrutura de computação de borda que visa atender uma demanda heterogênea e distribuída que unifica hardware, rede e software voltados para habilitação digital. Baseada nos requisitos da Indústria 4.0, esta infraestrutura habilitadora introduz o conceito de fatiamento da rede (Network Slicing), um recurso fundamental que transforma a rede de um paradigma estático em um novo paradigma onde as redes são lógicas, utilizando o modelo de compartilhamento de computação em nuvem e névoa, que deve atender às necessidades de acordos de nível de serviço de forma conveniente e otimizada, exigindo um mecanismo de orquestração para a alocação dinâmica de recursos. Entre esses mecanismos, a incorporação de redes virtuais (VNE) e o gerenciamento dinâmico de recursos (DRM) têm mostrado uma maneira de definir onde e como a tecnologia de computação em névoa deve ser usada. Este trabalho propõe um algoritmo de alocação de recursos, o VNE_CRS, que utiliza uma técnica de inteligência artificial chamada aprendizado por reforço para orquestrar múltiplos domínios da infraestrutura de uma rede 5G, beneficiandose de sua característica de considerar todo o problema, fim a fim, utilizando diferentes aspectos do Indice de Qualidade de Serviço 5G (5QIs). Experimentos foram realizados em simulação comparando o VNE_CRS com algoritmos do estado da arte para alocação VNE em ambiente Edge de múltiplos domínios. Os resultados mostraram que o uso de técnicas de aprendizado por reforço para alocação de recursos de VNE apresentou ganhos de desempenho. Ele pode não apenas simplificar a arquitetura VNE, mas também atuar como um sistema de orquestração completo que visa os resultados estratégicos de longo prazo5G technologies have enabled new applications on a heterogeneous and distributed Edge infrastructure which unifies hardware, network and software aimed at digital enabling. Based on requirements of Industry 4.0, this infrastructure introduces the concept of network slicing, a fundamental resource that transforms the network from a static paradigm into a new paradigm where networks are logical, developed using Cloud and fog computing sharing model, which should meet the needs of service level agreements in a convenient and optimized way, requiring an orchestration mechanism for the dynamic resource allocation. Among these mechanisms, virtual networks embedding (VNE) and dynamic resource management (DRM) have shown a way to define where and how Edge technology should be used. This paper proposes a resource allocation algorithm, VNE_CRS, which uses an artificial intelligence technique called reinforcement learning to orchestrate multiple domains, benefiting from its characteristic of considering the whole problem, end-to-end, using different aspects of 5G Quality of Service Indicator (5QIs). Experiments were carried out in simulation comparing VNE_CRS with stateof- the-art algorithms for multi domains Edge environment. Results have shown that the usage of reinforcement learning techniques to VNE resource allocation has shown performance gains. It can not only simplify the VNE architecture but also act as a full orchestration system that aims at the strategic long run results of whole infrastructure usageCentro Universitário FEI, São Bernardo do CampoBianchi, Reinaldo Augusto da CostaMoreira, C. L.2021-11-09T14:11:33Z2021-11-09T14:11:33Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOREIRA, C. L.; BIANCHI, Reinaldo Augusto da Costa. <b> Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço. </b> 2021. 142 p. Dissertação (Mestrado em engenharia Mecânica) - Centro Universitário FEI, São Bernardo do Campo, 2021 Disponível em: https://doi.org/10.31414/EE.2021.D.131377.https://doi.org/10.31414/EE.2021.D.131377https://repositorio.fei.edu.br/handle/FEI/3445porpt_BRInteligência Artificial Aplicada à Automação e Robóticareponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2023-03-14T13:07:58Zoai:repositorio.fei.edu.br:FEI/3445Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2023-03-14T13:07:58Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false
dc.title.none.fl_str_mv Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
title Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
spellingShingle Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
Moreira, C. L.
aprendizado por reforço
redes de quinta geração
fatiamento de rede
alocação de redes virtuais
computação de borda
title_short Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
title_full Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
title_fullStr Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
title_full_unstemmed Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
title_sort Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
author Moreira, C. L.
author_facet Moreira, C. L.
author_role author
dc.contributor.none.fl_str_mv Bianchi, Reinaldo Augusto da Costa
dc.contributor.author.fl_str_mv Moreira, C. L.
dc.subject.por.fl_str_mv aprendizado por reforço
redes de quinta geração
fatiamento de rede
alocação de redes virtuais
computação de borda
topic aprendizado por reforço
redes de quinta geração
fatiamento de rede
alocação de redes virtuais
computação de borda
description As tecnologias 5G possibilitaram novas aplicações em uma infraestrutura de computação de borda que visa atender uma demanda heterogênea e distribuída que unifica hardware, rede e software voltados para habilitação digital. Baseada nos requisitos da Indústria 4.0, esta infraestrutura habilitadora introduz o conceito de fatiamento da rede (Network Slicing), um recurso fundamental que transforma a rede de um paradigma estático em um novo paradigma onde as redes são lógicas, utilizando o modelo de compartilhamento de computação em nuvem e névoa, que deve atender às necessidades de acordos de nível de serviço de forma conveniente e otimizada, exigindo um mecanismo de orquestração para a alocação dinâmica de recursos. Entre esses mecanismos, a incorporação de redes virtuais (VNE) e o gerenciamento dinâmico de recursos (DRM) têm mostrado uma maneira de definir onde e como a tecnologia de computação em névoa deve ser usada. Este trabalho propõe um algoritmo de alocação de recursos, o VNE_CRS, que utiliza uma técnica de inteligência artificial chamada aprendizado por reforço para orquestrar múltiplos domínios da infraestrutura de uma rede 5G, beneficiandose de sua característica de considerar todo o problema, fim a fim, utilizando diferentes aspectos do Indice de Qualidade de Serviço 5G (5QIs). Experimentos foram realizados em simulação comparando o VNE_CRS com algoritmos do estado da arte para alocação VNE em ambiente Edge de múltiplos domínios. Os resultados mostraram que o uso de técnicas de aprendizado por reforço para alocação de recursos de VNE apresentou ganhos de desempenho. Ele pode não apenas simplificar a arquitetura VNE, mas também atuar como um sistema de orquestração completo que visa os resultados estratégicos de longo prazo
publishDate 2021
dc.date.none.fl_str_mv 2021-11-09T14:11:33Z
2021-11-09T14:11:33Z
2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MOREIRA, C. L.; BIANCHI, Reinaldo Augusto da Costa. <b> Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço. </b> 2021. 142 p. Dissertação (Mestrado em engenharia Mecânica) - Centro Universitário FEI, São Bernardo do Campo, 2021 Disponível em: https://doi.org/10.31414/EE.2021.D.131377.
https://doi.org/10.31414/EE.2021.D.131377
https://repositorio.fei.edu.br/handle/FEI/3445
identifier_str_mv MOREIRA, C. L.; BIANCHI, Reinaldo Augusto da Costa. <b> Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço. </b> 2021. 142 p. Dissertação (Mestrado em engenharia Mecânica) - Centro Universitário FEI, São Bernardo do Campo, 2021 Disponível em: https://doi.org/10.31414/EE.2021.D.131377.
url https://doi.org/10.31414/EE.2021.D.131377
https://repositorio.fei.edu.br/handle/FEI/3445
dc.language.iso.fl_str_mv por
pt_BR
language por
language_invalid_str_mv pt_BR
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Inteligência Artificial Aplicada à Automação e Robótica
dc.publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da FEI
instname:Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron:FEI
instname_str Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron_str FEI
institution FEI
reponame_str Biblioteca Digital de Teses e Dissertações da FEI
collection Biblioteca Digital de Teses e Dissertações da FEI
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)
repository.mail.fl_str_mv cfernandes@fei.edu.br
_version_ 1809225181181247488