Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | REM - International Engineering Journal |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000200299 |
Resumo: | Abstract The exploitation of low-grade iron ore deposits represents the current scenario for this business. Thus arise several types of research that aim at improvements and innovations as solutions to such situation. Therefore, herein, suggested is an alternative route for iron ore flotation that targets a higher mass recovery with concentrate within the market specification. First, the sample was deslimed at 38 µm and with the underflow a cut was performed in the 74 µm cyclone in order to separate the coarse particles from the fine. With the coarse particles, i.e. with the underflow, there a reverse flotation was carried on obtaining a concentrate with 67.7% of Fe and 0.9% of SiO2. In the fine particle overflow, direct flotation was done, generating a low-quality concentrate with 40.9% of Fe and 39.7% of SiO2. The mass recovery in direct flotation was 88% and in the reverse flotation was 61.1%. The concentrate generated from two flotations had a mass recovery of 67.4% with a content of Fe of 53.4% and 21.6% SiO2. |
id |
FG-1_6bbc978a265aebcdcbe4864f8fff59bf |
---|---|
oai_identifier_str |
oai:scielo:S2448-167X2018000200299 |
network_acronym_str |
FG-1 |
network_name_str |
REM - International Engineering Journal |
repository_id_str |
|
spelling |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plantiron oreflotation circuitsreverse flotationAbstract The exploitation of low-grade iron ore deposits represents the current scenario for this business. Thus arise several types of research that aim at improvements and innovations as solutions to such situation. Therefore, herein, suggested is an alternative route for iron ore flotation that targets a higher mass recovery with concentrate within the market specification. First, the sample was deslimed at 38 µm and with the underflow a cut was performed in the 74 µm cyclone in order to separate the coarse particles from the fine. With the coarse particles, i.e. with the underflow, there a reverse flotation was carried on obtaining a concentrate with 67.7% of Fe and 0.9% of SiO2. In the fine particle overflow, direct flotation was done, generating a low-quality concentrate with 40.9% of Fe and 39.7% of SiO2. The mass recovery in direct flotation was 88% and in the reverse flotation was 61.1%. The concentrate generated from two flotations had a mass recovery of 67.4% with a content of Fe of 53.4% and 21.6% SiO2.Fundação Gorceix2018-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000200299REM - International Engineering Journal v.71 n.2 2018reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672017710103info:eu-repo/semantics/openAccessJosé,Fabio de SãoBrod,Emanuela ReisPereira,Carlos Albertoeng2018-04-09T00:00:00Zoai:scielo:S2448-167X2018000200299Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2018-04-09T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false |
dc.title.none.fl_str_mv |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
title |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
spellingShingle |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant José,Fabio de São iron ore flotation circuits reverse flotation |
title_short |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
title_full |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
title_fullStr |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
title_full_unstemmed |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
title_sort |
Simultaneous use of direct and reverse flotation in the production of iron ore concentrate plant |
author |
José,Fabio de São |
author_facet |
José,Fabio de São Brod,Emanuela Reis Pereira,Carlos Alberto |
author_role |
author |
author2 |
Brod,Emanuela Reis Pereira,Carlos Alberto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
José,Fabio de São Brod,Emanuela Reis Pereira,Carlos Alberto |
dc.subject.por.fl_str_mv |
iron ore flotation circuits reverse flotation |
topic |
iron ore flotation circuits reverse flotation |
description |
Abstract The exploitation of low-grade iron ore deposits represents the current scenario for this business. Thus arise several types of research that aim at improvements and innovations as solutions to such situation. Therefore, herein, suggested is an alternative route for iron ore flotation that targets a higher mass recovery with concentrate within the market specification. First, the sample was deslimed at 38 µm and with the underflow a cut was performed in the 74 µm cyclone in order to separate the coarse particles from the fine. With the coarse particles, i.e. with the underflow, there a reverse flotation was carried on obtaining a concentrate with 67.7% of Fe and 0.9% of SiO2. In the fine particle overflow, direct flotation was done, generating a low-quality concentrate with 40.9% of Fe and 39.7% of SiO2. The mass recovery in direct flotation was 88% and in the reverse flotation was 61.1%. The concentrate generated from two flotations had a mass recovery of 67.4% with a content of Fe of 53.4% and 21.6% SiO2. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000200299 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000200299 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0370-44672017710103 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Fundação Gorceix |
publisher.none.fl_str_mv |
Fundação Gorceix |
dc.source.none.fl_str_mv |
REM - International Engineering Journal v.71 n.2 2018 reponame:REM - International Engineering Journal instname:Fundação Gorceix (FG) instacron:FG |
instname_str |
Fundação Gorceix (FG) |
instacron_str |
FG |
institution |
FG |
reponame_str |
REM - International Engineering Journal |
collection |
REM - International Engineering Journal |
repository.name.fl_str_mv |
REM - International Engineering Journal - Fundação Gorceix (FG) |
repository.mail.fl_str_mv |
||editor@rem.com.br |
_version_ |
1754734690953068544 |