A panel data approach to economic forecasting: the bias-corrected average forecast
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/894 |
Resumo: | In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast. |
id |
FGV_117065711028d3aedbb0919fada6f834 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/894 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Issler, João VictorLima, Luiz Renato Regis de OliveiraEscolas::EPGEFGV2008-05-13T15:39:36Z2008-05-13T15:39:36Z2007-01-010104-8910http://hdl.handle.net/10438/894In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;642Panel-data econometricsPooling of forecastsForecast-combination puzzleCommon featuresEconomiaEconomiaPrevisão econômica - Modelos econométricosA panel data approach to economic forecasting: the bias-corrected average forecastinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINAL2178.pdfapplication/pdf295441https://repositorio.fgv.br/bitstreams/fed43e73-0bba-460b-b061-233bda5ba463/download117952de432258e5f3542b31db8af541MD51TEXT2178.pdf.txt2178.pdf.txtExtracted texttext/plain63553https://repositorio.fgv.br/bitstreams/9e36dff8-dc78-4cee-8a5f-c89f241398ea/download64689975ffb5e7e2413c67dd1a148548MD56THUMBNAIL2178.pdf.jpg2178.pdf.jpgGenerated Thumbnailimage/jpeg3278https://repositorio.fgv.br/bitstreams/15850e03-93af-4a3c-b091-eff4e808f024/download4e85afe271a5e8718358fb2c01d0fd30MD5710438/8942023-11-08 23:03:49.584open.accessoai:repositorio.fgv.br:10438/894https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T23:03:49Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
A panel data approach to economic forecasting: the bias-corrected average forecast |
title |
A panel data approach to economic forecasting: the bias-corrected average forecast |
spellingShingle |
A panel data approach to economic forecasting: the bias-corrected average forecast Issler, João Victor Panel-data econometrics Pooling of forecasts Forecast-combination puzzle Common features Economia Economia Previsão econômica - Modelos econométricos |
title_short |
A panel data approach to economic forecasting: the bias-corrected average forecast |
title_full |
A panel data approach to economic forecasting: the bias-corrected average forecast |
title_fullStr |
A panel data approach to economic forecasting: the bias-corrected average forecast |
title_full_unstemmed |
A panel data approach to economic forecasting: the bias-corrected average forecast |
title_sort |
A panel data approach to economic forecasting: the bias-corrected average forecast |
author |
Issler, João Victor |
author_facet |
Issler, João Victor Lima, Luiz Renato Regis de Oliveira |
author_role |
author |
author2 |
Lima, Luiz Renato Regis de Oliveira |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Issler, João Victor Lima, Luiz Renato Regis de Oliveira |
dc.subject.por.fl_str_mv |
Panel-data econometrics Pooling of forecasts Forecast-combination puzzle Common features |
topic |
Panel-data econometrics Pooling of forecasts Forecast-combination puzzle Common features Economia Economia Previsão econômica - Modelos econométricos |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia Previsão econômica - Modelos econométricos |
description |
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007-01-01 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:39:36Z |
dc.date.available.fl_str_mv |
2008-05-13T15:39:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/894 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/894 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;642 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/fed43e73-0bba-460b-b061-233bda5ba463/download https://repositorio.fgv.br/bitstreams/9e36dff8-dc78-4cee-8a5f-c89f241398ea/download https://repositorio.fgv.br/bitstreams/15850e03-93af-4a3c-b091-eff4e808f024/download |
bitstream.checksum.fl_str_mv |
117952de432258e5f3542b31db8af541 64689975ffb5e7e2413c67dd1a148548 4e85afe271a5e8718358fb2c01d0fd30 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797651091554304 |