A panel data approach to economic forecasting: the bias-corrected average forecast

Detalhes bibliográficos
Autor(a) principal: Issler, João Victor
Data de Publicação: 2007
Outros Autores: Lima, Luiz Renato Regis de Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/894
Resumo: In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
id FGV_117065711028d3aedbb0919fada6f834
oai_identifier_str oai:repositorio.fgv.br:10438/894
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Issler, João VictorLima, Luiz Renato Regis de OliveiraEscolas::EPGEFGV2008-05-13T15:39:36Z2008-05-13T15:39:36Z2007-01-010104-8910http://hdl.handle.net/10438/894In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;642Panel-data econometricsPooling of forecastsForecast-combination puzzleCommon featuresEconomiaEconomiaPrevisão econômica - Modelos econométricosA panel data approach to economic forecasting: the bias-corrected average forecastinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINAL2178.pdfapplication/pdf295441https://repositorio.fgv.br/bitstreams/fed43e73-0bba-460b-b061-233bda5ba463/download117952de432258e5f3542b31db8af541MD51TEXT2178.pdf.txt2178.pdf.txtExtracted texttext/plain63553https://repositorio.fgv.br/bitstreams/9e36dff8-dc78-4cee-8a5f-c89f241398ea/download64689975ffb5e7e2413c67dd1a148548MD56THUMBNAIL2178.pdf.jpg2178.pdf.jpgGenerated Thumbnailimage/jpeg3278https://repositorio.fgv.br/bitstreams/15850e03-93af-4a3c-b091-eff4e808f024/download4e85afe271a5e8718358fb2c01d0fd30MD5710438/8942023-11-08 23:03:49.584open.accessoai:repositorio.fgv.br:10438/894https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T23:03:49Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv A panel data approach to economic forecasting: the bias-corrected average forecast
title A panel data approach to economic forecasting: the bias-corrected average forecast
spellingShingle A panel data approach to economic forecasting: the bias-corrected average forecast
Issler, João Victor
Panel-data econometrics
Pooling of forecasts
Forecast-combination puzzle
Common features
Economia
Economia
Previsão econômica - Modelos econométricos
title_short A panel data approach to economic forecasting: the bias-corrected average forecast
title_full A panel data approach to economic forecasting: the bias-corrected average forecast
title_fullStr A panel data approach to economic forecasting: the bias-corrected average forecast
title_full_unstemmed A panel data approach to economic forecasting: the bias-corrected average forecast
title_sort A panel data approach to economic forecasting: the bias-corrected average forecast
author Issler, João Victor
author_facet Issler, João Victor
Lima, Luiz Renato Regis de Oliveira
author_role author
author2 Lima, Luiz Renato Regis de Oliveira
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Issler, João Victor
Lima, Luiz Renato Regis de Oliveira
dc.subject.por.fl_str_mv Panel-data econometrics
Pooling of forecasts
Forecast-combination puzzle
Common features
topic Panel-data econometrics
Pooling of forecasts
Forecast-combination puzzle
Common features
Economia
Economia
Previsão econômica - Modelos econométricos
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Economia
Previsão econômica - Modelos econométricos
description In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
publishDate 2007
dc.date.issued.fl_str_mv 2007-01-01
dc.date.accessioned.fl_str_mv 2008-05-13T15:39:36Z
dc.date.available.fl_str_mv 2008-05-13T15:39:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/894
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/894
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;642
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/fed43e73-0bba-460b-b061-233bda5ba463/download
https://repositorio.fgv.br/bitstreams/9e36dff8-dc78-4cee-8a5f-c89f241398ea/download
https://repositorio.fgv.br/bitstreams/15850e03-93af-4a3c-b091-eff4e808f024/download
bitstream.checksum.fl_str_mv 117952de432258e5f3542b31db8af541
64689975ffb5e7e2413c67dd1a148548
4e85afe271a5e8718358fb2c01d0fd30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797651091554304