A panel data approach to economic forecasting: the bias-corrected average forecast

Detalhes bibliográficos
Autor(a) principal: Lima, Luiz Renato Regis de Oliveira
Data de Publicação: 2008
Outros Autores: Issler, João Victor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/731
Resumo: In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
id FGV_80f631069286e27efc6cbbfd53d7d45d
oai_identifier_str oai:repositorio.fgv.br:10438/731
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Lima, Luiz Renato Regis de OliveiraIssler, João VictorEscolas::EPGEFGV2008-05-13T15:32:01Z2008-05-13T15:32:01Z2008-01-010104-8910http://hdl.handle.net/10438/731In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;668Forecast combinationForecast-combination puzzleCommon featuresPanel dataBias-corrected average forecastEconomiaEconomiaPrevisão econômica - Modelos econométricosA panel data approach to economic forecasting: the bias-corrected average forecastinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINAL2280.pdfapplication/pdf358861https://repositorio.fgv.br/bitstreams/aa9f7d2e-bb74-49ec-b8e0-56de36e5c4bd/download6e1d70c1c9da9266b0afcc52a4d69909MD51TEXT2280.pdf.txt2280.pdf.txtExtracted texttext/plain81807https://repositorio.fgv.br/bitstreams/9d9cd0a5-c05a-40af-a326-12f3b8a3d5ec/download3b4994b5dd29c01dd3d7a70b2874af83MD56THUMBNAIL2280.pdf.jpg2280.pdf.jpgGenerated Thumbnailimage/jpeg3414https://repositorio.fgv.br/bitstreams/6e161f46-9442-4d7d-bed2-2ad2eecbc8a0/download38c81943a2b263610bc03ef34366b834MD5710438/7312023-11-08 19:20:03.43open.accessoai:repositorio.fgv.br:10438/731https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T19:20:03Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv A panel data approach to economic forecasting: the bias-corrected average forecast
title A panel data approach to economic forecasting: the bias-corrected average forecast
spellingShingle A panel data approach to economic forecasting: the bias-corrected average forecast
Lima, Luiz Renato Regis de Oliveira
Forecast combination
Forecast-combination puzzle
Common features
Panel data
Bias-corrected average forecast
Economia
Economia
Previsão econômica - Modelos econométricos
title_short A panel data approach to economic forecasting: the bias-corrected average forecast
title_full A panel data approach to economic forecasting: the bias-corrected average forecast
title_fullStr A panel data approach to economic forecasting: the bias-corrected average forecast
title_full_unstemmed A panel data approach to economic forecasting: the bias-corrected average forecast
title_sort A panel data approach to economic forecasting: the bias-corrected average forecast
author Lima, Luiz Renato Regis de Oliveira
author_facet Lima, Luiz Renato Regis de Oliveira
Issler, João Victor
author_role author
author2 Issler, João Victor
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Lima, Luiz Renato Regis de Oliveira
Issler, João Victor
dc.subject.eng.fl_str_mv Forecast combination
Forecast-combination puzzle
Common features
Panel data
Bias-corrected average forecast
topic Forecast combination
Forecast-combination puzzle
Common features
Panel data
Bias-corrected average forecast
Economia
Economia
Previsão econômica - Modelos econométricos
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Economia
Previsão econômica - Modelos econométricos
description In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
publishDate 2008
dc.date.accessioned.fl_str_mv 2008-05-13T15:32:01Z
dc.date.available.fl_str_mv 2008-05-13T15:32:01Z
dc.date.issued.fl_str_mv 2008-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/731
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;668
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/aa9f7d2e-bb74-49ec-b8e0-56de36e5c4bd/download
https://repositorio.fgv.br/bitstreams/9d9cd0a5-c05a-40af-a326-12f3b8a3d5ec/download
https://repositorio.fgv.br/bitstreams/6e161f46-9442-4d7d-bed2-2ad2eecbc8a0/download
bitstream.checksum.fl_str_mv 6e1d70c1c9da9266b0afcc52a4d69909
3b4994b5dd29c01dd3d7a70b2874af83
38c81943a2b263610bc03ef34366b834
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797862913343488