Bounds on functionals of the distribution treatment effects
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/6647 |
Resumo: | Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible. |
id |
FGV_2788525f0e1f65ed76c98323ad3ecb28 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/6647 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Firpo, Sergio PinheiroRidder, GeertEscolas::EESP2010-06-01T16:09:08Z2010-06-01T16:09:08Z2010-06-01http://hdl.handle.net/10438/6647Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.engTextos para Discussão;201Treatment effectsSocial welfareBoundsEconomiaBem-estar socialBounds on functionals of the distribution treatment effectsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALTD 201 - Sergio Firpo; Geert Ridder.pdfTD 201 - Sergio Firpo; Geert Ridder.pdfapplication/pdf1051178https://repositorio.fgv.br/bitstreams/b4abccc0-bf50-4fd3-b1b1-c504b02bf04c/download895981e5e4f2af2bc729c8f7eed95fe9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84712https://repositorio.fgv.br/bitstreams/01f618db-bf32-4189-bc91-554db6f1d5ac/download4dea6f7333914d9740702a2deb2db217MD52TEXTTD 201 - Sergio Firpo; Geert Ridder.pdf.txtTD 201 - Sergio Firpo; Geert Ridder.pdf.txtExtracted texttext/plain74114https://repositorio.fgv.br/bitstreams/2a36238d-0816-4d43-a7fa-b2362bc2c2f2/download5f7032818ce3bff0f91064aab7472833MD57THUMBNAILTD 201 - Sergio Firpo; Geert Ridder.pdf.jpgTD 201 - Sergio Firpo; Geert Ridder.pdf.jpgGenerated Thumbnailimage/jpeg3626https://repositorio.fgv.br/bitstreams/aa02cc20-51c1-49b5-9f8f-65d1ea186363/downloadbd306aa743e9a2f505088bb5e05b3ef4MD5810438/66472023-11-08 13:39:55.594open.accessoai:repositorio.fgv.br:10438/6647https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T13:39:55Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cwpmdW5jaW9uw6FyaW9zIGRlIHF1YWxxdWVyIHJlc3BvbnNhYmlsaWRhZGUgcGVsbyB1c28gbsOjby1hdXRvcml6YWRvIGRvCm1hdGVyaWFsIGRlcG9zaXRhZG8sIHNlamEgZW0gdmluY3VsYcOnw6NvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIHNlamEKZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbwpxdWUgZmHDp2FtIHVzbyBkYXMgaW50ZXJmYWNlcyBlIGVzcGHDp28gZGUgYXJtYXplbmFtZW50byBwcm92aWRlbmNpYWRvcwpwZWxhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgcG9yIG1laW8gZGUgc2V1cyBzaXN0ZW1hcyBpbmZvcm1hdGl6YWRvcy4KCjIuIEEgYXNzaW5hdHVyYSBkZXN0YSBsaWNlbsOnYSB0ZW0gY29tbyBjb25zZXHDvMOqbmNpYSBhIHRyYW5zZmVyw6puY2lhLCBhCnTDrXR1bG8gbsOjby1leGNsdXNpdm8gZSBuw6NvLW9uZXJvc28sIGlzZW50YSBkbyBwYWdhbWVudG8gZGUgcm95YWx0aWVzCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvCkdldHVsaW8gVmFyZ2FzLCBkb3MgZGlyZWl0b3MgZGUgYXJtYXplbmFyIGRpZ2l0YWxtZW50ZSwgcmVwcm9kdXppciBlCmRpc3RyaWJ1aXIgbmFjaW9uYWwgZSBpbnRlcm5hY2lvbmFsbWVudGUgYSBPYnJhLCBpbmNsdWluZG8tc2UgbyBzZXUKcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbApGR1YsIGFvIHDDumJsaWNvIGVtIGdlcmFsLCBlbSByZWdpbWUgZGUgYWNlc3NvIGFiZXJ0by4KCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zCm5vIGl0ZW0gMiwgc3VwcmEsIHF1YWxxdWVyIGRpcmVpdG8gZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBjYWLDrXZlbAplbSByZWxhw6fDo28gw6AgT2JyYSBvcmEgZGVwb3NpdGFkYSwgaW5jbHVpbmRvLXNlIG9zIHVzb3MgcmVmZXJlbnRlcyDDoApyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQptb2RhbGlkYWRlIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gcXVlIGV4aXN0YSBvdSB2ZW5oYSBhIGV4aXN0aXIsCm5vcyB0ZXJtb3MgZG8gYXJ0aWdvIDY4IGUgc2VndWludGVzIGRhIExlaSA5LjYxMC85OCwgbmEgZXh0ZW5zw6NvIHF1ZQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2EKVmlydHVhbCBGR1YuCgo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vCml0ZW0gMiwgc3VwcmEsIHRvZG9zIG9zIGRpcmVpdG9zIGNvbmV4b3MgZGUgYXJ0aXN0YXMgaW50w6lycHJldGVzIG91CmV4ZWN1dGFudGVzLCBwcm9kdXRvcmVzIGZvbm9ncsOhZmljb3Mgb3UgZW1wcmVzYXMgZGUgcmFkaW9kaWZ1c8OjbyBxdWUKZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQpjb25mb3JtaWRhZGUgY29tIG8gcmVnaW1lIGZpeGFkbyBubyBUw610dWxvIFYgZGEgTGVpIDkuNjEwLzk4LgoKNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcgppbnN0aXR1acOnw7VlcyBkZSBmb21lbnRvIMOgIHBlc3F1aXNhIG91IHF1YWxxdWVyIG91dHJhIHNlbWVsaGFudGUsIHZvY8OqCm91IG8gdGl0dWxhciBhc3NlZ3VyYSBxdWUgY3VtcHJpdSB0b2RhcyBhcyBvYnJpZ2HDp8O1ZXMgcXVlIGxoZSBmb3JhbQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlCnF1ZSBuw6NvIGVzdMOhIGNvbnRyYXJpYW5kbyBxdWFscXVlciBkaXNwb3Npw6fDo28gY29udHJhdHVhbCByZWZlcmVudGUgw6AKcHVibGljYcOnw6NvIGRvIGNvbnRlw7pkbyBvcmEgc3VibWV0aWRvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YuCgo2LiBDYXNvIGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbmNvbnRyZS1zZSBsaWNlbmNpYWRhIHNvYiB1bWEgbGljZW7Dp2EKQ3JlYXRpdmUgQ29tbW9ucyAocXVhbHF1ZXIgdmVyc8OjbyksIHNvYiBhIGxpY2Vuw6dhIEdOVSBGcmVlCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhCmNvbW8gbGl2cmUgc2VndW5kbyBvcyBjcml0w6lyaW9zIGRhIERlZmluaXRpb24gb2YgRnJlZSBDdWx0dXJhbCBXb3JrcwooZGlzcG9uw612ZWwgZW06IGh0dHA6Ly9mcmVlZG9tZGVmaW5lZC5vcmcvRGVmaW5pdGlvbikgb3UgRnJlZSBTb2Z0d2FyZQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgCm8gYXJxdWl2byByZWZlcmVudGUgw6AgT2JyYSBkZXZlIGluZGljYXIgYSBsaWNlbsOnYSBhcGxpY8OhdmVsIGVtCmNvbnRlw7pkbyBsZWfDrXZlbCBwb3Igc2VyZXMgaHVtYW5vcyBlLCBzZSBwb3Nzw612ZWwsIHRhbWLDqW0gZW0gbWV0YWRhZG9zCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcgphY29tcGFuaGFkYSBkZSB1bSBsaW5rIHBhcmEgb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gb3Ugc3VhIGPDs3BpYQppbnRlZ3JhbC4KCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUKc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlCmNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zCnNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MKcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbwpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcgppbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28KZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvCm7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zCmFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUKdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgoKUGFyYSBhIHNvbHXDp8OjbyBkZSBxdWFscXVlciBkw7p2aWRhIHF1YW50byBhb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gZQpvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28sIGVudHJlIGVtIGNvbnRhdG8gY29tIFtuY2VwZ2VAZmd2LmJyXQo= |
dc.title.eng.fl_str_mv |
Bounds on functionals of the distribution treatment effects |
title |
Bounds on functionals of the distribution treatment effects |
spellingShingle |
Bounds on functionals of the distribution treatment effects Firpo, Sergio Pinheiro Treatment effects Social welfare Bounds Economia Bem-estar social |
title_short |
Bounds on functionals of the distribution treatment effects |
title_full |
Bounds on functionals of the distribution treatment effects |
title_fullStr |
Bounds on functionals of the distribution treatment effects |
title_full_unstemmed |
Bounds on functionals of the distribution treatment effects |
title_sort |
Bounds on functionals of the distribution treatment effects |
author |
Firpo, Sergio Pinheiro |
author_facet |
Firpo, Sergio Pinheiro Ridder, Geert |
author_role |
author |
author2 |
Ridder, Geert |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.author.fl_str_mv |
Firpo, Sergio Pinheiro Ridder, Geert |
dc.subject.eng.fl_str_mv |
Treatment effects Social welfare |
topic |
Treatment effects Social welfare Bounds Economia Bem-estar social |
dc.subject.por.fl_str_mv |
Bounds |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Bem-estar social |
description |
Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible. |
publishDate |
2010 |
dc.date.accessioned.fl_str_mv |
2010-06-01T16:09:08Z |
dc.date.available.fl_str_mv |
2010-06-01T16:09:08Z |
dc.date.issued.fl_str_mv |
2010-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/6647 |
url |
http://hdl.handle.net/10438/6647 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Textos para Discussão;201 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/b4abccc0-bf50-4fd3-b1b1-c504b02bf04c/download https://repositorio.fgv.br/bitstreams/01f618db-bf32-4189-bc91-554db6f1d5ac/download https://repositorio.fgv.br/bitstreams/2a36238d-0816-4d43-a7fa-b2362bc2c2f2/download https://repositorio.fgv.br/bitstreams/aa02cc20-51c1-49b5-9f8f-65d1ea186363/download |
bitstream.checksum.fl_str_mv |
895981e5e4f2af2bc729c8f7eed95fe9 4dea6f7333914d9740702a2deb2db217 5f7032818ce3bff0f91064aab7472833 bd306aa743e9a2f505088bb5e05b3ef4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797656977211392 |