Bounds on functionals of the distribution treatment effects

Detalhes bibliográficos
Autor(a) principal: Firpo, Sergio Pinheiro
Data de Publicação: 2010
Outros Autores: Ridder, Geert
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/6647
Resumo: Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.
id FGV_2788525f0e1f65ed76c98323ad3ecb28
oai_identifier_str oai:repositorio.fgv.br:10438/6647
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Firpo, Sergio PinheiroRidder, GeertEscolas::EESP2010-06-01T16:09:08Z2010-06-01T16:09:08Z2010-06-01http://hdl.handle.net/10438/6647Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.engTextos para Discussão;201Treatment effectsSocial welfareBoundsEconomiaBem-estar socialBounds on functionals of the distribution treatment effectsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALTD 201 - Sergio Firpo; Geert Ridder.pdfTD 201 - Sergio Firpo; Geert Ridder.pdfapplication/pdf1051178https://repositorio.fgv.br/bitstreams/b4abccc0-bf50-4fd3-b1b1-c504b02bf04c/download895981e5e4f2af2bc729c8f7eed95fe9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84712https://repositorio.fgv.br/bitstreams/01f618db-bf32-4189-bc91-554db6f1d5ac/download4dea6f7333914d9740702a2deb2db217MD52TEXTTD 201 - Sergio Firpo; Geert Ridder.pdf.txtTD 201 - Sergio Firpo; Geert Ridder.pdf.txtExtracted texttext/plain74114https://repositorio.fgv.br/bitstreams/2a36238d-0816-4d43-a7fa-b2362bc2c2f2/download5f7032818ce3bff0f91064aab7472833MD57THUMBNAILTD 201 - Sergio Firpo; Geert Ridder.pdf.jpgTD 201 - Sergio Firpo; Geert Ridder.pdf.jpgGenerated Thumbnailimage/jpeg3626https://repositorio.fgv.br/bitstreams/aa02cc20-51c1-49b5-9f8f-65d1ea186363/downloadbd306aa743e9a2f505088bb5e05b3ef4MD5810438/66472023-11-08 13:39:55.594open.accessoai:repositorio.fgv.br:10438/6647https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T13:39:55Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cwpmdW5jaW9uw6FyaW9zIGRlIHF1YWxxdWVyIHJlc3BvbnNhYmlsaWRhZGUgcGVsbyB1c28gbsOjby1hdXRvcml6YWRvIGRvCm1hdGVyaWFsIGRlcG9zaXRhZG8sIHNlamEgZW0gdmluY3VsYcOnw6NvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIHNlamEKZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbwpxdWUgZmHDp2FtIHVzbyBkYXMgaW50ZXJmYWNlcyBlIGVzcGHDp28gZGUgYXJtYXplbmFtZW50byBwcm92aWRlbmNpYWRvcwpwZWxhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgcG9yIG1laW8gZGUgc2V1cyBzaXN0ZW1hcyBpbmZvcm1hdGl6YWRvcy4KCjIuIEEgYXNzaW5hdHVyYSBkZXN0YSBsaWNlbsOnYSB0ZW0gY29tbyBjb25zZXHDvMOqbmNpYSBhIHRyYW5zZmVyw6puY2lhLCBhCnTDrXR1bG8gbsOjby1leGNsdXNpdm8gZSBuw6NvLW9uZXJvc28sIGlzZW50YSBkbyBwYWdhbWVudG8gZGUgcm95YWx0aWVzCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvCkdldHVsaW8gVmFyZ2FzLCBkb3MgZGlyZWl0b3MgZGUgYXJtYXplbmFyIGRpZ2l0YWxtZW50ZSwgcmVwcm9kdXppciBlCmRpc3RyaWJ1aXIgbmFjaW9uYWwgZSBpbnRlcm5hY2lvbmFsbWVudGUgYSBPYnJhLCBpbmNsdWluZG8tc2UgbyBzZXUKcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbApGR1YsIGFvIHDDumJsaWNvIGVtIGdlcmFsLCBlbSByZWdpbWUgZGUgYWNlc3NvIGFiZXJ0by4KCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zCm5vIGl0ZW0gMiwgc3VwcmEsIHF1YWxxdWVyIGRpcmVpdG8gZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBjYWLDrXZlbAplbSByZWxhw6fDo28gw6AgT2JyYSBvcmEgZGVwb3NpdGFkYSwgaW5jbHVpbmRvLXNlIG9zIHVzb3MgcmVmZXJlbnRlcyDDoApyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQptb2RhbGlkYWRlIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gcXVlIGV4aXN0YSBvdSB2ZW5oYSBhIGV4aXN0aXIsCm5vcyB0ZXJtb3MgZG8gYXJ0aWdvIDY4IGUgc2VndWludGVzIGRhIExlaSA5LjYxMC85OCwgbmEgZXh0ZW5zw6NvIHF1ZQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2EKVmlydHVhbCBGR1YuCgo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vCml0ZW0gMiwgc3VwcmEsIHRvZG9zIG9zIGRpcmVpdG9zIGNvbmV4b3MgZGUgYXJ0aXN0YXMgaW50w6lycHJldGVzIG91CmV4ZWN1dGFudGVzLCBwcm9kdXRvcmVzIGZvbm9ncsOhZmljb3Mgb3UgZW1wcmVzYXMgZGUgcmFkaW9kaWZ1c8OjbyBxdWUKZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQpjb25mb3JtaWRhZGUgY29tIG8gcmVnaW1lIGZpeGFkbyBubyBUw610dWxvIFYgZGEgTGVpIDkuNjEwLzk4LgoKNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcgppbnN0aXR1acOnw7VlcyBkZSBmb21lbnRvIMOgIHBlc3F1aXNhIG91IHF1YWxxdWVyIG91dHJhIHNlbWVsaGFudGUsIHZvY8OqCm91IG8gdGl0dWxhciBhc3NlZ3VyYSBxdWUgY3VtcHJpdSB0b2RhcyBhcyBvYnJpZ2HDp8O1ZXMgcXVlIGxoZSBmb3JhbQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlCnF1ZSBuw6NvIGVzdMOhIGNvbnRyYXJpYW5kbyBxdWFscXVlciBkaXNwb3Npw6fDo28gY29udHJhdHVhbCByZWZlcmVudGUgw6AKcHVibGljYcOnw6NvIGRvIGNvbnRlw7pkbyBvcmEgc3VibWV0aWRvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YuCgo2LiBDYXNvIGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbmNvbnRyZS1zZSBsaWNlbmNpYWRhIHNvYiB1bWEgbGljZW7Dp2EKQ3JlYXRpdmUgQ29tbW9ucyAocXVhbHF1ZXIgdmVyc8OjbyksIHNvYiBhIGxpY2Vuw6dhIEdOVSBGcmVlCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhCmNvbW8gbGl2cmUgc2VndW5kbyBvcyBjcml0w6lyaW9zIGRhIERlZmluaXRpb24gb2YgRnJlZSBDdWx0dXJhbCBXb3JrcwooZGlzcG9uw612ZWwgZW06IGh0dHA6Ly9mcmVlZG9tZGVmaW5lZC5vcmcvRGVmaW5pdGlvbikgb3UgRnJlZSBTb2Z0d2FyZQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgCm8gYXJxdWl2byByZWZlcmVudGUgw6AgT2JyYSBkZXZlIGluZGljYXIgYSBsaWNlbsOnYSBhcGxpY8OhdmVsIGVtCmNvbnRlw7pkbyBsZWfDrXZlbCBwb3Igc2VyZXMgaHVtYW5vcyBlLCBzZSBwb3Nzw612ZWwsIHRhbWLDqW0gZW0gbWV0YWRhZG9zCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcgphY29tcGFuaGFkYSBkZSB1bSBsaW5rIHBhcmEgb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gb3Ugc3VhIGPDs3BpYQppbnRlZ3JhbC4KCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUKc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlCmNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zCnNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MKcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbwpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcgppbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28KZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvCm7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zCmFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUKdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgoKUGFyYSBhIHNvbHXDp8OjbyBkZSBxdWFscXVlciBkw7p2aWRhIHF1YW50byBhb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gZQpvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28sIGVudHJlIGVtIGNvbnRhdG8gY29tIFtuY2VwZ2VAZmd2LmJyXQo=
dc.title.eng.fl_str_mv Bounds on functionals of the distribution treatment effects
title Bounds on functionals of the distribution treatment effects
spellingShingle Bounds on functionals of the distribution treatment effects
Firpo, Sergio Pinheiro
Treatment effects
Social welfare
Bounds
Economia
Bem-estar social
title_short Bounds on functionals of the distribution treatment effects
title_full Bounds on functionals of the distribution treatment effects
title_fullStr Bounds on functionals of the distribution treatment effects
title_full_unstemmed Bounds on functionals of the distribution treatment effects
title_sort Bounds on functionals of the distribution treatment effects
author Firpo, Sergio Pinheiro
author_facet Firpo, Sergio Pinheiro
Ridder, Geert
author_role author
author2 Ridder, Geert
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.author.fl_str_mv Firpo, Sergio Pinheiro
Ridder, Geert
dc.subject.eng.fl_str_mv Treatment effects
Social welfare
topic Treatment effects
Social welfare
Bounds
Economia
Bem-estar social
dc.subject.por.fl_str_mv Bounds
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Bem-estar social
description Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.
publishDate 2010
dc.date.accessioned.fl_str_mv 2010-06-01T16:09:08Z
dc.date.available.fl_str_mv 2010-06-01T16:09:08Z
dc.date.issued.fl_str_mv 2010-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/6647
url http://hdl.handle.net/10438/6647
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Textos para Discussão;201
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/b4abccc0-bf50-4fd3-b1b1-c504b02bf04c/download
https://repositorio.fgv.br/bitstreams/01f618db-bf32-4189-bc91-554db6f1d5ac/download
https://repositorio.fgv.br/bitstreams/2a36238d-0816-4d43-a7fa-b2362bc2c2f2/download
https://repositorio.fgv.br/bitstreams/aa02cc20-51c1-49b5-9f8f-65d1ea186363/download
bitstream.checksum.fl_str_mv 895981e5e4f2af2bc729c8f7eed95fe9
4dea6f7333914d9740702a2deb2db217
5f7032818ce3bff0f91064aab7472833
bd306aa743e9a2f505088bb5e05b3ef4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1819893375433703424