Bounds for sine and cosine via eigenvalue estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/109685 https://doi.org/10.2478/spma-2014-0003 |
Resumo: | De ne n × n tridiagonal matrices T and S as follows: All entries of the main diagonal of T are zero and those of the rst super- and subdiagonal are one. The entries of the main diagonal of S are two except the (n, n) entry one, and those of the rst super- and subdiagonal are minus one. Then, denoting by (·) the largest eigenvalue, (T) = 2 cos n + 1 , (S−1) = 1 4 cos2 n 2n+1 . Using certain lower bounds for the largest eigenvalue, we provide lower bounds for these expressions and, further, lower bounds for sin x and cos x on certain intervals. Also upper bounds can be obtained in this way. |
id |
RCAP_2c59e7e1ab82c0b5539e7fc226dfd25d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/109685 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bounds for sine and cosine via eigenvalue estimationeigenvalue boundstrigonometric inequalitiesDe ne n × n tridiagonal matrices T and S as follows: All entries of the main diagonal of T are zero and those of the rst super- and subdiagonal are one. The entries of the main diagonal of S are two except the (n, n) entry one, and those of the rst super- and subdiagonal are minus one. Then, denoting by (·) the largest eigenvalue, (T) = 2 cos n + 1 , (S−1) = 1 4 cos2 n 2n+1 . Using certain lower bounds for the largest eigenvalue, we provide lower bounds for these expressions and, further, lower bounds for sin x and cos x on certain intervals. Also upper bounds can be obtained in this way.Walter de Gruyter2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109685http://hdl.handle.net/10316/109685https://doi.org/10.2478/spma-2014-0003eng2300-7451Haukkanen, PenttiMattila, MikaMerikoski, Jorma K.Kovacec, Alexanderinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-20T11:55:21Zoai:estudogeral.uc.pt:10316/109685Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:50.491932Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bounds for sine and cosine via eigenvalue estimation |
title |
Bounds for sine and cosine via eigenvalue estimation |
spellingShingle |
Bounds for sine and cosine via eigenvalue estimation Haukkanen, Pentti eigenvalue bounds trigonometric inequalities |
title_short |
Bounds for sine and cosine via eigenvalue estimation |
title_full |
Bounds for sine and cosine via eigenvalue estimation |
title_fullStr |
Bounds for sine and cosine via eigenvalue estimation |
title_full_unstemmed |
Bounds for sine and cosine via eigenvalue estimation |
title_sort |
Bounds for sine and cosine via eigenvalue estimation |
author |
Haukkanen, Pentti |
author_facet |
Haukkanen, Pentti Mattila, Mika Merikoski, Jorma K. Kovacec, Alexander |
author_role |
author |
author2 |
Mattila, Mika Merikoski, Jorma K. Kovacec, Alexander |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Haukkanen, Pentti Mattila, Mika Merikoski, Jorma K. Kovacec, Alexander |
dc.subject.por.fl_str_mv |
eigenvalue bounds trigonometric inequalities |
topic |
eigenvalue bounds trigonometric inequalities |
description |
De ne n × n tridiagonal matrices T and S as follows: All entries of the main diagonal of T are zero and those of the rst super- and subdiagonal are one. The entries of the main diagonal of S are two except the (n, n) entry one, and those of the rst super- and subdiagonal are minus one. Then, denoting by (·) the largest eigenvalue, (T) = 2 cos n + 1 , (S−1) = 1 4 cos2 n 2n+1 . Using certain lower bounds for the largest eigenvalue, we provide lower bounds for these expressions and, further, lower bounds for sin x and cos x on certain intervals. Also upper bounds can be obtained in this way. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/109685 http://hdl.handle.net/10316/109685 https://doi.org/10.2478/spma-2014-0003 |
url |
http://hdl.handle.net/10316/109685 https://doi.org/10.2478/spma-2014-0003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2300-7451 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Walter de Gruyter |
publisher.none.fl_str_mv |
Walter de Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817549954622685184 |