Hypothesis testing in econometric models

Detalhes bibliográficos
Autor(a) principal: Vilela, Lucas Pimentel
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/18249
Resumo: This thesis contains three chapters. The first chapter considers tests of the parameter of an endogenous variable in an instrumental variables regression model. The focus is on one-sided conditional t-tests. Theoretical and numerical work shows that the conditional 2SLS and Fuller t-tests perform well even when instruments are weakly correlated with the endogenous variable. When the population F-statistic is as small as two, the power is reasonably close to the power envelopes for similar and non-similar tests which are invariant to rotation transformations of the instruments. This finding is surprising considering the poor performance of two-sided conditional t-tests found in Andrews, Moreira, and Stock (2007). These tests have bad power because the conditional null distributions of t-statistics are asymmetric when instruments are weak. Taking this asymmetry into account, we propose two-sided tests based on t-statistics. These novel tests are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test. The second and third chapters are interested in maxmin and minimax regret tests for broader hypothesis testing problems. In the second chapter, we present maxmin and minimax regret tests satisfying more general restrictions than the alpha-level and the power control over all alternative hypothesis constraints. More general restrictions enable us to eliminate trivial known tests and obtain tests with desirable properties, such as unbiasedness, local unbiasedness and similarity. In sequence, we prove that both tests always exist and under suficient assumptions, they are Bayes tests with priors that are solutions of an optimization problem, the dual problem. In the last part of the second chapter, we consider testing problems that are invariant to some group of transformations. Under the invariance of the hypothesis testing, the Hunt-Stein Theorem proves that the search for maxmin and minimax regret tests can be restricted to invariant tests. We prove that the Hunt-Stein Theorem still holds under the general constraints proposed. In the last chapter we develop a numerical method to implement maxmin and minimax regret tests proposed in the second chapter. The parametric space is discretized in order to obtain testing problems with a finite number of restrictions. We prove that, as the discretization turns finer, the maxmin and the minimax regret tests satisfying the finite number of restrictions have the same alternative power of the maxmin and minimax regret tests satisfying the general constraints. Hence, we can numerically implement tests for a finite number of restrictions as an approximation for the tests satisfying the general constraints. The results in the second and third chapters extend and complement the maxmin and minimax regret literature interested in characterizing and implementing both tests.
id FGV_2bf289ec3b353036ab959368118bcda1
oai_identifier_str oai:repositorio.fgv.br:10438/18249
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Vilela, Lucas PimentelEscolas::EPGEAlmeida, Caio Ibsen Rodrigues deMoreira, Humberto Luiz AtaídeFernandes, MarceloMendes, Eduardo FonsecaMoreira, Marcelo Jovita2017-05-15T19:32:18Z2017-05-15T19:32:18Z2015-12-11VILELA, Lucas Pimentel. Hypothesis testing in econometric models. Tese (Doutorado em Economia) - Escola de Pós-Graduação em Economia, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.https://hdl.handle.net/10438/18249This thesis contains three chapters. The first chapter considers tests of the parameter of an endogenous variable in an instrumental variables regression model. The focus is on one-sided conditional t-tests. Theoretical and numerical work shows that the conditional 2SLS and Fuller t-tests perform well even when instruments are weakly correlated with the endogenous variable. When the population F-statistic is as small as two, the power is reasonably close to the power envelopes for similar and non-similar tests which are invariant to rotation transformations of the instruments. This finding is surprising considering the poor performance of two-sided conditional t-tests found in Andrews, Moreira, and Stock (2007). These tests have bad power because the conditional null distributions of t-statistics are asymmetric when instruments are weak. Taking this asymmetry into account, we propose two-sided tests based on t-statistics. These novel tests are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test. The second and third chapters are interested in maxmin and minimax regret tests for broader hypothesis testing problems. In the second chapter, we present maxmin and minimax regret tests satisfying more general restrictions than the alpha-level and the power control over all alternative hypothesis constraints. More general restrictions enable us to eliminate trivial known tests and obtain tests with desirable properties, such as unbiasedness, local unbiasedness and similarity. In sequence, we prove that both tests always exist and under suficient assumptions, they are Bayes tests with priors that are solutions of an optimization problem, the dual problem. In the last part of the second chapter, we consider testing problems that are invariant to some group of transformations. Under the invariance of the hypothesis testing, the Hunt-Stein Theorem proves that the search for maxmin and minimax regret tests can be restricted to invariant tests. We prove that the Hunt-Stein Theorem still holds under the general constraints proposed. In the last chapter we develop a numerical method to implement maxmin and minimax regret tests proposed in the second chapter. The parametric space is discretized in order to obtain testing problems with a finite number of restrictions. We prove that, as the discretization turns finer, the maxmin and the minimax regret tests satisfying the finite number of restrictions have the same alternative power of the maxmin and minimax regret tests satisfying the general constraints. Hence, we can numerically implement tests for a finite number of restrictions as an approximation for the tests satisfying the general constraints. The results in the second and third chapters extend and complement the maxmin and minimax regret literature interested in characterizing and implementing both tests.Esta tese contém três capítulos. O primeiro capítulo considera testes de hipóteses para o coeficiente de regressão da variável endógena em um modelo de variáveis instrumentais. O foco é em testes-t condicionais para hipóteses unilaterais. Trabalhos teóricos e numéricos mostram que os testes-t condicionais centrados nos estimadores de 2SLS e Fuller performam bem mesmo quando os instrumentos são fracamente correlacionados com a variável endógena. Quando a estatística F populacional é menor que dois, o poder é razoavelmente próximo do poder envoltório para testes que são invariantes a transformações que rotacionam os instrumentos (similares ou não similares). Este resultado é surpreendente considerando a baixa performance dos testes-t condicionais para hipóteses bilaterais apresentado em Andrews, Moreira, and Stock (2007). Estes testes possuem baixo poder porque as distribuições das estatísticas-t na hipótese nula são assimétricas quando os instrumentos são fracos. Explorando tal assimetria, nós propomos testes para hipóteses bilaterais baseados em estatísticas-t. Estes testes são aproximadamente não viesados e podem performar tão bem quanto o teste de razão de máxima verossimilhança condicional. No segundo e no terceiro capítulos, nosso interesse é em testes do tipo maxmin e minimax regret para testes de hipóteses mais gerais. No segundo capítulo, nós apresentamos testes maxmin e minimax regret que satisfazem restrições mais gerais que as restrições de tamanho e de controle sobre todo o poder na hipótese alternativa. Restrições mais gerais nos possibilitam eliminar testes triviais e obter testes com propriedades desejáveis, como por exemplo não viés, não viés local e similaridade. Na sequência, nós provamos que ambos os testes existem e, sob condições suficientes, eles são testes Bayesianos com priors que são solução de um problema de otimização, o problema dual. Na última parte do segundo capítulo, nós consideramos testes de hipóteses que são invariantes à algum grupo de transformações. Sob invariância, o Teorema de Hunt-Stein implica que a busca por testes maxmin e minimax regret pode ser restrita a testes invariantes. Nós provamos que o Teorema de Hunt-Stein continua válido sob as restrições gerais propostas. No último capítulo, nós desenvolvemos um procedimento numérico para implementar os testes maxmin e minimax regret propostos no segundo capítulo. O espaço paramétrico é discretizado com o objetivo de obter testes de hipóteses com um número finito de pontos. Nós provamos que, ao considerarmos partições mais finas, os testes maxmin e minimax regret que satisfazem um número finito de pontos possuem o mesmo poder na hipótese alternativa que os testes maxmin e minimax regret que satisfazem as restrições gerais. Portanto, nós podemos implementar numericamente os testes que satisfazem um número finito de pontos como aproximação aos testes que satisfazem as restrições gerais.engInstrumental variables regressionInvariant testsOptimal testsSimilar testsWeak instrumentsUnbiased testsMaxmin testsMinimax regret testsMost stringent testsInstrumentos fracosTestes invariantesTestes não viesadosTestes ótimosTestes similaresVariáveis instrumentaisTestes maxminTestes minimax regretEconomiaTestes de hipóteses estatísticasVariáveis instrumentais (Estatística)Modelos econométricosHypothesis testing in econometric modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVTEXTHypothesis Testing in Econometric Models - Vilela 2017.pdf.txtHypothesis Testing in Econometric Models - Vilela 2017.pdf.txtExtracted texttext/plain184720https://repositorio.fgv.br/bitstreams/4f501be0-2463-41a0-840d-70d514b6002c/download004b100663235d6fd278f2d0b5dd6322MD54ORIGINALHypothesis Testing in Econometric Models - Vilela 2017.pdfHypothesis Testing in Econometric Models - Vilela 2017.pdfPDFapplication/pdf2079231https://repositorio.fgv.br/bitstreams/006c5be8-9a8e-4830-a4b3-7759dfa55136/downloadd0387462f36ab4ab7e5d33163bb68416MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/b2aa6850-63ca-40c1-9236-8a392b31f1f4/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILHypothesis Testing in Econometric Models - Vilela 2017.pdf.jpgHypothesis Testing in Econometric Models - Vilela 2017.pdf.jpgIM Thumbnailimage/jpeg1033https://repositorio.fgv.br/bitstreams/e5cef5a1-5804-4a53-b458-2cce773ad3c2/downloadd74bcdd83b14b46500f6fb1d241f187aMD5310438/182492024-06-10 12:53:19.752open.accessoai:repositorio.fgv.br:10438/18249https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-06-10T12:53:19Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Hypothesis testing in econometric models
title Hypothesis testing in econometric models
spellingShingle Hypothesis testing in econometric models
Vilela, Lucas Pimentel
Instrumental variables regression
Invariant tests
Optimal tests
Similar tests
Weak instruments
Unbiased tests
Maxmin tests
Minimax regret tests
Most stringent tests
Instrumentos fracos
Testes invariantes
Testes não viesados
Testes ótimos
Testes similares
Variáveis instrumentais
Testes maxmin
Testes minimax regret
Economia
Testes de hipóteses estatísticas
Variáveis instrumentais (Estatística)
Modelos econométricos
title_short Hypothesis testing in econometric models
title_full Hypothesis testing in econometric models
title_fullStr Hypothesis testing in econometric models
title_full_unstemmed Hypothesis testing in econometric models
title_sort Hypothesis testing in econometric models
author Vilela, Lucas Pimentel
author_facet Vilela, Lucas Pimentel
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.member.none.fl_str_mv Almeida, Caio Ibsen Rodrigues de
Moreira, Humberto Luiz Ataíde
Fernandes, Marcelo
Mendes, Eduardo Fonseca
dc.contributor.author.fl_str_mv Vilela, Lucas Pimentel
dc.contributor.advisor1.fl_str_mv Moreira, Marcelo Jovita
contributor_str_mv Moreira, Marcelo Jovita
dc.subject.eng.fl_str_mv Instrumental variables regression
Invariant tests
Optimal tests
Similar tests
Weak instruments
Unbiased tests
Maxmin tests
Minimax regret tests
Most stringent tests
topic Instrumental variables regression
Invariant tests
Optimal tests
Similar tests
Weak instruments
Unbiased tests
Maxmin tests
Minimax regret tests
Most stringent tests
Instrumentos fracos
Testes invariantes
Testes não viesados
Testes ótimos
Testes similares
Variáveis instrumentais
Testes maxmin
Testes minimax regret
Economia
Testes de hipóteses estatísticas
Variáveis instrumentais (Estatística)
Modelos econométricos
dc.subject.por.fl_str_mv Instrumentos fracos
Testes invariantes
Testes não viesados
Testes ótimos
Testes similares
Variáveis instrumentais
Testes maxmin
Testes minimax regret
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Testes de hipóteses estatísticas
Variáveis instrumentais (Estatística)
Modelos econométricos
description This thesis contains three chapters. The first chapter considers tests of the parameter of an endogenous variable in an instrumental variables regression model. The focus is on one-sided conditional t-tests. Theoretical and numerical work shows that the conditional 2SLS and Fuller t-tests perform well even when instruments are weakly correlated with the endogenous variable. When the population F-statistic is as small as two, the power is reasonably close to the power envelopes for similar and non-similar tests which are invariant to rotation transformations of the instruments. This finding is surprising considering the poor performance of two-sided conditional t-tests found in Andrews, Moreira, and Stock (2007). These tests have bad power because the conditional null distributions of t-statistics are asymmetric when instruments are weak. Taking this asymmetry into account, we propose two-sided tests based on t-statistics. These novel tests are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test. The second and third chapters are interested in maxmin and minimax regret tests for broader hypothesis testing problems. In the second chapter, we present maxmin and minimax regret tests satisfying more general restrictions than the alpha-level and the power control over all alternative hypothesis constraints. More general restrictions enable us to eliminate trivial known tests and obtain tests with desirable properties, such as unbiasedness, local unbiasedness and similarity. In sequence, we prove that both tests always exist and under suficient assumptions, they are Bayes tests with priors that are solutions of an optimization problem, the dual problem. In the last part of the second chapter, we consider testing problems that are invariant to some group of transformations. Under the invariance of the hypothesis testing, the Hunt-Stein Theorem proves that the search for maxmin and minimax regret tests can be restricted to invariant tests. We prove that the Hunt-Stein Theorem still holds under the general constraints proposed. In the last chapter we develop a numerical method to implement maxmin and minimax regret tests proposed in the second chapter. The parametric space is discretized in order to obtain testing problems with a finite number of restrictions. We prove that, as the discretization turns finer, the maxmin and the minimax regret tests satisfying the finite number of restrictions have the same alternative power of the maxmin and minimax regret tests satisfying the general constraints. Hence, we can numerically implement tests for a finite number of restrictions as an approximation for the tests satisfying the general constraints. The results in the second and third chapters extend and complement the maxmin and minimax regret literature interested in characterizing and implementing both tests.
publishDate 2015
dc.date.issued.fl_str_mv 2015-12-11
dc.date.accessioned.fl_str_mv 2017-05-15T19:32:18Z
dc.date.available.fl_str_mv 2017-05-15T19:32:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VILELA, Lucas Pimentel. Hypothesis testing in econometric models. Tese (Doutorado em Economia) - Escola de Pós-Graduação em Economia, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/18249
identifier_str_mv VILELA, Lucas Pimentel. Hypothesis testing in econometric models. Tese (Doutorado em Economia) - Escola de Pós-Graduação em Economia, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2017.
url https://hdl.handle.net/10438/18249
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/4f501be0-2463-41a0-840d-70d514b6002c/download
https://repositorio.fgv.br/bitstreams/006c5be8-9a8e-4830-a4b3-7759dfa55136/download
https://repositorio.fgv.br/bitstreams/b2aa6850-63ca-40c1-9236-8a392b31f1f4/download
https://repositorio.fgv.br/bitstreams/e5cef5a1-5804-4a53-b458-2cce773ad3c2/download
bitstream.checksum.fl_str_mv 004b100663235d6fd278f2d0b5dd6322
d0387462f36ab4ab7e5d33163bb68416
dfb340242cced38a6cca06c627998fa1
d74bcdd83b14b46500f6fb1d241f187a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797715011698688