Invariant tests in an instrumental variables model with unknown data generating process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/15228 |
Resumo: | In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model. |
id |
FGV_ce975a28499771ef76af811064f8f081 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/15228 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Castro, Gustavo Rabello deEscolas::EPGEFGVIssler, João VictorMedeiros, Marcelo CunhaMoreira, Marcelo Jovita2016-02-11T17:59:18Z2016-02-11T17:59:18Z2015-04-28CASTRO, Gustavo Rabello de. Invariant tests in an instrumental variables model with unknown data generating process. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.https://hdl.handle.net/10438/15228In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model.Este trabalho trata de testes para o parâmetro de uma variável endógena em modelos de regressão com variáveis instrumentais fracas. Propomos uma nova restrição para o viés dos testes weighted average power (WAP), desenvolvidos em Moreira e Moreira (16, 2013). A motivação para essa nova restrição se baseia na eficiência do teste score sob a hipótese de identificação forte. Essa hipótese permite reduzir o custo computacional dos testes WAP, substituindo a restrição de strongly unbiased. Esta ultima demanda que, sob a hipótese nula, o teste seja ortogonal a uma dada estatística com sua dimensão dada pelo número de instrumentos. A restrição aqui proposta exige somente que o teste seja não correlacionado com uma combinação linear dessa estatística. Nas simulações, ambos os testes apresentam um desempenho numericamente similar. Aplicamos ainda os testes discutidos neste trabalho na estimação da elasticidade de substituição intertemporal de um modelo CCAPM.engInstrumental variable regressionInvariant testsOptimal testsSimilar testsUnbiased testsWeighted average power testsWeak instrumentsRegressão com variáveis instrumentaisTestes invariantesTestes ótimosTestes similaresTestes não viesadosInstrumentos fracosEconomiaAnálise de regressãoVariáveis instrumentais (Estatística)Testes de hipóteses estatísticasInvariant tests in an instrumental variables model with unknown data generating processinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf1716177https://repositorio.fgv.br/bitstreams/270a38b2-6809-46a4-9c12-3711e4399f05/download6516904780e3dae7837ee9b481d63ba7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/86b09dc2-0b1e-4a05-9383-215c2600119d/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertacao Final.pdf.txtDissertacao Final.pdf.txtExtracted Texttext/plain63695https://repositorio.fgv.br/bitstreams/46af1bc0-7d7e-414f-b79e-0f3be3404c76/download18d44ff5d7e68264be55794eb83cd6aaMD53PDF.txtPDF.txtExtracted texttext/plain65095https://repositorio.fgv.br/bitstreams/3e6baba9-a5b9-4c63-ae82-08e82c73b5ad/download43485b2c85d51b40fdec23c25af65b59MD55THUMBNAILDissertacao Final.pdf.jpgDissertacao Final.pdf.jpgGenerated Thumbnailimage/jpeg1582https://repositorio.fgv.br/bitstreams/025f8322-1eac-405d-a7f4-20dc8a289670/downloadb0d22114e8e89f3cf41b51f15b9019d1MD54PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg2884https://repositorio.fgv.br/bitstreams/76250fe5-3870-4a4e-8e2a-4263da2c2ac5/downloadf6d9e321d76184c019dcc1a6a971f284MD5610438/152282024-07-08 19:14:03.043open.accessoai:repositorio.fgv.br:10438/15228https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T19:14:03Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Invariant tests in an instrumental variables model with unknown data generating process |
title |
Invariant tests in an instrumental variables model with unknown data generating process |
spellingShingle |
Invariant tests in an instrumental variables model with unknown data generating process Castro, Gustavo Rabello de Instrumental variable regression Invariant tests Optimal tests Similar tests Unbiased tests Weighted average power tests Weak instruments Regressão com variáveis instrumentais Testes invariantes Testes ótimos Testes similares Testes não viesados Instrumentos fracos Economia Análise de regressão Variáveis instrumentais (Estatística) Testes de hipóteses estatísticas |
title_short |
Invariant tests in an instrumental variables model with unknown data generating process |
title_full |
Invariant tests in an instrumental variables model with unknown data generating process |
title_fullStr |
Invariant tests in an instrumental variables model with unknown data generating process |
title_full_unstemmed |
Invariant tests in an instrumental variables model with unknown data generating process |
title_sort |
Invariant tests in an instrumental variables model with unknown data generating process |
author |
Castro, Gustavo Rabello de |
author_facet |
Castro, Gustavo Rabello de |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.member.none.fl_str_mv |
Issler, João Victor Medeiros, Marcelo Cunha |
dc.contributor.author.fl_str_mv |
Castro, Gustavo Rabello de |
dc.contributor.advisor1.fl_str_mv |
Moreira, Marcelo Jovita |
contributor_str_mv |
Moreira, Marcelo Jovita |
dc.subject.eng.fl_str_mv |
Instrumental variable regression Invariant tests Optimal tests Similar tests Unbiased tests Weighted average power tests Weak instruments |
topic |
Instrumental variable regression Invariant tests Optimal tests Similar tests Unbiased tests Weighted average power tests Weak instruments Regressão com variáveis instrumentais Testes invariantes Testes ótimos Testes similares Testes não viesados Instrumentos fracos Economia Análise de regressão Variáveis instrumentais (Estatística) Testes de hipóteses estatísticas |
dc.subject.por.fl_str_mv |
Regressão com variáveis instrumentais Testes invariantes Testes ótimos Testes similares Testes não viesados Instrumentos fracos |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Análise de regressão Variáveis instrumentais (Estatística) Testes de hipóteses estatísticas |
description |
In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-04-28 |
dc.date.accessioned.fl_str_mv |
2016-02-11T17:59:18Z |
dc.date.available.fl_str_mv |
2016-02-11T17:59:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CASTRO, Gustavo Rabello de. Invariant tests in an instrumental variables model with unknown data generating process. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015. |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/15228 |
identifier_str_mv |
CASTRO, Gustavo Rabello de. Invariant tests in an instrumental variables model with unknown data generating process. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015. |
url |
https://hdl.handle.net/10438/15228 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/270a38b2-6809-46a4-9c12-3711e4399f05/download https://repositorio.fgv.br/bitstreams/86b09dc2-0b1e-4a05-9383-215c2600119d/download https://repositorio.fgv.br/bitstreams/46af1bc0-7d7e-414f-b79e-0f3be3404c76/download https://repositorio.fgv.br/bitstreams/3e6baba9-a5b9-4c63-ae82-08e82c73b5ad/download https://repositorio.fgv.br/bitstreams/025f8322-1eac-405d-a7f4-20dc8a289670/download https://repositorio.fgv.br/bitstreams/76250fe5-3870-4a4e-8e2a-4263da2c2ac5/download |
bitstream.checksum.fl_str_mv |
6516904780e3dae7837ee9b481d63ba7 dfb340242cced38a6cca06c627998fa1 18d44ff5d7e68264be55794eb83cd6aa 43485b2c85d51b40fdec23c25af65b59 b0d22114e8e89f3cf41b51f15b9019d1 f6d9e321d76184c019dcc1a6a971f284 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797840364765184 |