Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/11993 |
Resumo: | This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results. |
id |
FGV_3208a711f63bd9c552baac92a5765f34 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/11993 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Hiroki, MarceloEscolas::EESPCintra, Roberto BarbosaSilva, Marcos Eugênio daPinto, Afonso de Campos2014-09-04T13:41:36Z2014-09-04T13:41:36Z2014-08-08HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014.http://hdl.handle.net/10438/11993This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results.Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.porCurva de jurosModelo VasicekFiltro de KalmanVetor autorregressivoEconomiaInvestimentos - AdministraçãoTaxas de juros - BrasilTaxas de juros - Modelos matemáticosPrevisão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALdissertacao_Marcelo_Hiroki_Final.pdfdissertacao_Marcelo_Hiroki_Final.pdfapplication/pdf1600897https://repositorio.fgv.br/bitstreams/d92a3981-c344-46ca-8ab2-d1cbe84fd61e/download3084ffc43e26c1311352b13d330264bfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/359d01d1-e298-4902-8fa9-f497c0c51747/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTdissertacao_Marcelo_Hiroki_Final.pdf.txtdissertacao_Marcelo_Hiroki_Final.pdf.txtExtracted texttext/plain102376https://repositorio.fgv.br/bitstreams/d262b6f6-0f79-4615-af99-52a502e7b0e1/downloadb67e28059dc7562dc2a5a4eaba46697fMD57THUMBNAILdissertacao_Marcelo_Hiroki_Final.pdf.jpgdissertacao_Marcelo_Hiroki_Final.pdf.jpgGenerated Thumbnailimage/jpeg2560https://repositorio.fgv.br/bitstreams/cbc05435-276b-42f4-8cf9-06bfb8adce91/download9474f42a3c8c08de11262d7834815461MD5810438/119932023-11-08 07:19:07.228open.accessoai:repositorio.fgv.br:10438/11993https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T07:19:07Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
title |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
spellingShingle |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro Hiroki, Marcelo Curva de juros Modelo Vasicek Filtro de Kalman Vetor autorregressivo Economia Investimentos - Administração Taxas de juros - Brasil Taxas de juros - Modelos matemáticos |
title_short |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
title_full |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
title_fullStr |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
title_full_unstemmed |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
title_sort |
Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro |
author |
Hiroki, Marcelo |
author_facet |
Hiroki, Marcelo |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Cintra, Roberto Barbosa Silva, Marcos Eugênio da |
dc.contributor.author.fl_str_mv |
Hiroki, Marcelo |
dc.contributor.advisor1.fl_str_mv |
Pinto, Afonso de Campos |
contributor_str_mv |
Pinto, Afonso de Campos |
dc.subject.por.fl_str_mv |
Curva de juros Modelo Vasicek Filtro de Kalman Vetor autorregressivo |
topic |
Curva de juros Modelo Vasicek Filtro de Kalman Vetor autorregressivo Economia Investimentos - Administração Taxas de juros - Brasil Taxas de juros - Modelos matemáticos |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Investimentos - Administração Taxas de juros - Brasil Taxas de juros - Modelos matemáticos |
description |
This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results. |
publishDate |
2014 |
dc.date.accessioned.fl_str_mv |
2014-09-04T13:41:36Z |
dc.date.available.fl_str_mv |
2014-09-04T13:41:36Z |
dc.date.issued.fl_str_mv |
2014-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/11993 |
identifier_str_mv |
HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014. |
url |
http://hdl.handle.net/10438/11993 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/d92a3981-c344-46ca-8ab2-d1cbe84fd61e/download https://repositorio.fgv.br/bitstreams/359d01d1-e298-4902-8fa9-f497c0c51747/download https://repositorio.fgv.br/bitstreams/d262b6f6-0f79-4615-af99-52a502e7b0e1/download https://repositorio.fgv.br/bitstreams/cbc05435-276b-42f4-8cf9-06bfb8adce91/download |
bitstream.checksum.fl_str_mv |
3084ffc43e26c1311352b13d330264bf dfb340242cced38a6cca06c627998fa1 b67e28059dc7562dc2a5a4eaba46697f 9474f42a3c8c08de11262d7834815461 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797794096349184 |