Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro

Detalhes bibliográficos
Autor(a) principal: Hiroki, Marcelo
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/11993
Resumo: This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results.
id FGV_3208a711f63bd9c552baac92a5765f34
oai_identifier_str oai:repositorio.fgv.br:10438/11993
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Hiroki, MarceloEscolas::EESPCintra, Roberto BarbosaSilva, Marcos Eugênio daPinto, Afonso de Campos2014-09-04T13:41:36Z2014-09-04T13:41:36Z2014-08-08HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014.http://hdl.handle.net/10438/11993This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results.Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.porCurva de jurosModelo VasicekFiltro de KalmanVetor autorregressivoEconomiaInvestimentos - AdministraçãoTaxas de juros - BrasilTaxas de juros - Modelos matemáticosPrevisão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALdissertacao_Marcelo_Hiroki_Final.pdfdissertacao_Marcelo_Hiroki_Final.pdfapplication/pdf1600897https://repositorio.fgv.br/bitstreams/d92a3981-c344-46ca-8ab2-d1cbe84fd61e/download3084ffc43e26c1311352b13d330264bfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/359d01d1-e298-4902-8fa9-f497c0c51747/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTdissertacao_Marcelo_Hiroki_Final.pdf.txtdissertacao_Marcelo_Hiroki_Final.pdf.txtExtracted texttext/plain102376https://repositorio.fgv.br/bitstreams/d262b6f6-0f79-4615-af99-52a502e7b0e1/downloadb67e28059dc7562dc2a5a4eaba46697fMD57THUMBNAILdissertacao_Marcelo_Hiroki_Final.pdf.jpgdissertacao_Marcelo_Hiroki_Final.pdf.jpgGenerated Thumbnailimage/jpeg2560https://repositorio.fgv.br/bitstreams/cbc05435-276b-42f4-8cf9-06bfb8adce91/download9474f42a3c8c08de11262d7834815461MD5810438/119932023-11-08 07:19:07.228open.accessoai:repositorio.fgv.br:10438/11993https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T07:19:07Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
title Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
spellingShingle Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
Hiroki, Marcelo
Curva de juros
Modelo Vasicek
Filtro de Kalman
Vetor autorregressivo
Economia
Investimentos - Administração
Taxas de juros - Brasil
Taxas de juros - Modelos matemáticos
title_short Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
title_full Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
title_fullStr Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
title_full_unstemmed Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
title_sort Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro
author Hiroki, Marcelo
author_facet Hiroki, Marcelo
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Cintra, Roberto Barbosa
Silva, Marcos Eugênio da
dc.contributor.author.fl_str_mv Hiroki, Marcelo
dc.contributor.advisor1.fl_str_mv Pinto, Afonso de Campos
contributor_str_mv Pinto, Afonso de Campos
dc.subject.por.fl_str_mv Curva de juros
Modelo Vasicek
Filtro de Kalman
Vetor autorregressivo
topic Curva de juros
Modelo Vasicek
Filtro de Kalman
Vetor autorregressivo
Economia
Investimentos - Administração
Taxas de juros - Brasil
Taxas de juros - Modelos matemáticos
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Investimentos - Administração
Taxas de juros - Brasil
Taxas de juros - Modelos matemáticos
description This work aims to test the quality of forecasting of the two factor Vasicek Model coupled with the Kalman filter. Applied to an investment strategy, it runs with a Stop Loss criteria for periods in which the model does not fit the interest rates. Using BMF’s DI future contracts available for the period of 1st of March, 2007 to the 30th of May 2014, we simulated the strategy for different periods with different conditions, aiming on finding the optimal time series window that will lead to the model parameters that best fit the current term structure, also, it will be analyzed how long these parameters optimally estimate interest rate dynamic. The results were compared with the ones obtained from the vector autoregressive model of lag 1, indicating that Vasicek Model underperform compared to this model. The limitation of the two factor model on capturing the term structure dynamics does not allow the model to estimate the term structure at once denigrating the results.
publishDate 2014
dc.date.accessioned.fl_str_mv 2014-09-04T13:41:36Z
dc.date.available.fl_str_mv 2014-09-04T13:41:36Z
dc.date.issued.fl_str_mv 2014-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/11993
identifier_str_mv HIROKI, Marcelo. Previsão da estrutura a termo de taxa de juros aplicando o Filtro de Kalman ao modelo Vasicek: o caso brasileiro. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2014.
url http://hdl.handle.net/10438/11993
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/d92a3981-c344-46ca-8ab2-d1cbe84fd61e/download
https://repositorio.fgv.br/bitstreams/359d01d1-e298-4902-8fa9-f497c0c51747/download
https://repositorio.fgv.br/bitstreams/d262b6f6-0f79-4615-af99-52a502e7b0e1/download
https://repositorio.fgv.br/bitstreams/cbc05435-276b-42f4-8cf9-06bfb8adce91/download
bitstream.checksum.fl_str_mv 3084ffc43e26c1311352b13d330264bf
dfb340242cced38a6cca06c627998fa1
b67e28059dc7562dc2a5a4eaba46697f
9474f42a3c8c08de11262d7834815461
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797794096349184