Bad reputation with rating systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/18310 |
Resumo: | Este trabalho analisa um modelo de má reputação com sistemas de rating como uma forma particular de memória limitada. Em cada período, um cliente preocupado apenas com ganhos correntes escolhe se contrata ou não um especialista. O cliente compreende as regras de transição do sistema, mas observa apenas a realização de um rating (uma nota) que carrega informação sobre o provável tipo de especialista para tomar a decisão de contrato. Um especialista do tipo estratégico escolhe prover ou não o tratamento correto quando contratado e um especialista do tipo ruim sempre oferece o tratamento mais caro, independentemente do problema observado. Quando clientes observam todo o histórico de interacões, um especialista estratégico ou tem fortes incentivos para oferecer o tratamento barato (quando o tratamento correto seria o mais caro) ou eventualmente a crença no mercado de que ele é do tipo ruim é suficientemente grande para que deixe de ser contratado. Quando clientes possuem apenas o sistema de rating como fonte de informação, este trabalho demonstra que não apenas é possível evitar esse efeito negativo, como também é possível aumentar os ganhos de equilíbrio em comparação à ausência de qualquer sistema informacional. Ademais, este trabalho desenha os sistemas ótimos do ponto de vista tanto do cliente quando do especialista para todas as crenças iniciais, discutindo como eles diferem em um sistema de dois estados e quando há ganhos de eficiência. |
id |
FGV_32404ebbb87895fbbe866578b1ae1b5d |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/18310 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Lorecchio, Caio Paes LemeEscolas::EESPCamargo, Bráz Ministério deMaestri, Lucas JóverMonte, Daniel2017-06-08T12:52:00Z2017-06-08T12:52:00Z2017-05-11LORECCHIO, Caio Paes Leme. Bad reputation with rating systems. Dissertação (Mestrado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017.http://hdl.handle.net/10438/18310Este trabalho analisa um modelo de má reputação com sistemas de rating como uma forma particular de memória limitada. Em cada período, um cliente preocupado apenas com ganhos correntes escolhe se contrata ou não um especialista. O cliente compreende as regras de transição do sistema, mas observa apenas a realização de um rating (uma nota) que carrega informação sobre o provável tipo de especialista para tomar a decisão de contrato. Um especialista do tipo estratégico escolhe prover ou não o tratamento correto quando contratado e um especialista do tipo ruim sempre oferece o tratamento mais caro, independentemente do problema observado. Quando clientes observam todo o histórico de interacões, um especialista estratégico ou tem fortes incentivos para oferecer o tratamento barato (quando o tratamento correto seria o mais caro) ou eventualmente a crença no mercado de que ele é do tipo ruim é suficientemente grande para que deixe de ser contratado. Quando clientes possuem apenas o sistema de rating como fonte de informação, este trabalho demonstra que não apenas é possível evitar esse efeito negativo, como também é possível aumentar os ganhos de equilíbrio em comparação à ausência de qualquer sistema informacional. Ademais, este trabalho desenha os sistemas ótimos do ponto de vista tanto do cliente quando do especialista para todas as crenças iniciais, discutindo como eles diferem em um sistema de dois estados e quando há ganhos de eficiência.We study a bad reputation model with rating system as a special form of limited memory. At each period, a myopic customer knowing the rules of the system but observing only a current public realization of a finite set of states uses this information to infer expert's type and take hiring decisions. A strategic expert chooses whether or not to provide correct treatment whenever hired and a bad (committed) expert always proposes an expensive treatment. With full memory, a patient expert cannot refrain from gaining reputation of being bad or lying to separate herself from a bad type. With rating systems, we show that it is possible not only to overcome bad reputation effect, but generate higher equilibrium outcomes relative to trivial information censoring (no memory at all). We characterize optimal systems from customer and strategic expert's point of view in a two-state setting for all prior beliefs and show how they differ and when a rating system can bring efficiency to experts' markets.engRating systemsBayesian persuasionBad reputation gamesJogos de má reputaçãoSistemas de ratingPersuasão bayesianaEconomiaMicroeconomiaTeoria bayesiana de decisão estatísticaPersuasão (Retórica)Teoria dos jogosBad reputation with rating systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTBad Reputation with Rating Systems.pdf.txtBad Reputation with Rating Systems.pdf.txtExtracted texttext/plain103731https://repositorio.fgv.br/bitstreams/2fdb11a8-7349-43ab-9286-8f0e6589f5b9/download134ea38db30109ca1a07e089a31d1d36MD57ORIGINALBad Reputation with Rating Systems.pdfBad Reputation with Rating Systems.pdfapplication/pdf373018https://repositorio.fgv.br/bitstreams/4e1df2b8-93ff-4752-93e9-c25e579de600/download6855d5f3fc595b138d084679ef3eeabeMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/4128457b-9bd0-44f6-ab8c-a8f993634bea/downloaddfb340242cced38a6cca06c627998fa1MD54THUMBNAILBad Reputation with Rating Systems.pdf.jpgBad Reputation with Rating Systems.pdf.jpgGenerated Thumbnailimage/jpeg2322https://repositorio.fgv.br/bitstreams/64d7bfd6-3197-4c8a-9da7-4399612d0f11/downloadd80b6aead4b25ade77bc4270834e3927MD5810438/183102023-11-26 07:39:26.842open.accessoai:repositorio.fgv.br:10438/18310https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T07:39:26Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Bad reputation with rating systems |
title |
Bad reputation with rating systems |
spellingShingle |
Bad reputation with rating systems Lorecchio, Caio Paes Leme Rating systems Bayesian persuasion Bad reputation games Jogos de má reputação Sistemas de rating Persuasão bayesiana Economia Microeconomia Teoria bayesiana de decisão estatística Persuasão (Retórica) Teoria dos jogos |
title_short |
Bad reputation with rating systems |
title_full |
Bad reputation with rating systems |
title_fullStr |
Bad reputation with rating systems |
title_full_unstemmed |
Bad reputation with rating systems |
title_sort |
Bad reputation with rating systems |
author |
Lorecchio, Caio Paes Leme |
author_facet |
Lorecchio, Caio Paes Leme |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Camargo, Bráz Ministério de Maestri, Lucas Jóver |
dc.contributor.author.fl_str_mv |
Lorecchio, Caio Paes Leme |
dc.contributor.advisor1.fl_str_mv |
Monte, Daniel |
contributor_str_mv |
Monte, Daniel |
dc.subject.eng.fl_str_mv |
Rating systems Bayesian persuasion Bad reputation games |
topic |
Rating systems Bayesian persuasion Bad reputation games Jogos de má reputação Sistemas de rating Persuasão bayesiana Economia Microeconomia Teoria bayesiana de decisão estatística Persuasão (Retórica) Teoria dos jogos |
dc.subject.por.fl_str_mv |
Jogos de má reputação Sistemas de rating Persuasão bayesiana |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Microeconomia Teoria bayesiana de decisão estatística Persuasão (Retórica) Teoria dos jogos |
description |
Este trabalho analisa um modelo de má reputação com sistemas de rating como uma forma particular de memória limitada. Em cada período, um cliente preocupado apenas com ganhos correntes escolhe se contrata ou não um especialista. O cliente compreende as regras de transição do sistema, mas observa apenas a realização de um rating (uma nota) que carrega informação sobre o provável tipo de especialista para tomar a decisão de contrato. Um especialista do tipo estratégico escolhe prover ou não o tratamento correto quando contratado e um especialista do tipo ruim sempre oferece o tratamento mais caro, independentemente do problema observado. Quando clientes observam todo o histórico de interacões, um especialista estratégico ou tem fortes incentivos para oferecer o tratamento barato (quando o tratamento correto seria o mais caro) ou eventualmente a crença no mercado de que ele é do tipo ruim é suficientemente grande para que deixe de ser contratado. Quando clientes possuem apenas o sistema de rating como fonte de informação, este trabalho demonstra que não apenas é possível evitar esse efeito negativo, como também é possível aumentar os ganhos de equilíbrio em comparação à ausência de qualquer sistema informacional. Ademais, este trabalho desenha os sistemas ótimos do ponto de vista tanto do cliente quando do especialista para todas as crenças iniciais, discutindo como eles diferem em um sistema de dois estados e quando há ganhos de eficiência. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-06-08T12:52:00Z |
dc.date.available.fl_str_mv |
2017-06-08T12:52:00Z |
dc.date.issued.fl_str_mv |
2017-05-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LORECCHIO, Caio Paes Leme. Bad reputation with rating systems. Dissertação (Mestrado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/18310 |
identifier_str_mv |
LORECCHIO, Caio Paes Leme. Bad reputation with rating systems. Dissertação (Mestrado em Economia de Empresas) - FGV - Fundação Getúlio Vargas, São Paulo, 2017. |
url |
http://hdl.handle.net/10438/18310 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/2fdb11a8-7349-43ab-9286-8f0e6589f5b9/download https://repositorio.fgv.br/bitstreams/4e1df2b8-93ff-4752-93e9-c25e579de600/download https://repositorio.fgv.br/bitstreams/4128457b-9bd0-44f6-ab8c-a8f993634bea/download https://repositorio.fgv.br/bitstreams/64d7bfd6-3197-4c8a-9da7-4399612d0f11/download |
bitstream.checksum.fl_str_mv |
134ea38db30109ca1a07e089a31d1d36 6855d5f3fc595b138d084679ef3eeabe dfb340242cced38a6cca06c627998fa1 d80b6aead4b25ade77bc4270834e3927 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1824968034855419904 |