A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data

Detalhes bibliográficos
Autor(a) principal: Aranha, Renato Santos
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/27673
Resumo: Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed.
id FGV_52a8874423b8450a305d14536ef93d0b
oai_identifier_str oai:repositorio.fgv.br:10438/27673
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Aranha, Renato SantosEscolas::EMApSouza, Renato RochaSilva, Moacyr Alvim Horta Barbosa daOgasawara, EduardoMendes, Eduardo Fonseca2019-07-05T14:25:14Z2019-07-05T14:25:14Z2019-05-10https://hdl.handle.net/10438/27673Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed.Macroscopic Fundamental DiagramTraffic TheoryGPS bus dataUber H3Traffic StateMatemáticaEngenharia de tráfego - Modelos matemáticosTrânsito - Fluxo - Modelos matemáticosTráfego urbano - Modelos matemáticosA method to estimate the Macroscopic Fundamental Diagram using Bus GPS Datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALdisserta_R_Aranha_EN_.pdfdisserta_R_Aranha_EN_.pdfapplication/pdf3326890https://repositorio.fgv.br/bitstreams/ae66335d-d1eb-4179-a884-7b66e3b66e7b/downloade2890fa3c58bd7c86c97f30c7c453957MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/cc004a63-57a2-4e8d-a606-cc2c9d135d5e/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTdisserta_R_Aranha_EN_.pdf.txtdisserta_R_Aranha_EN_.pdf.txtExtracted texttext/plain80050https://repositorio.fgv.br/bitstreams/cee7a484-fa82-4641-a534-07407942344b/download6712fa3e09547a78e41d4015165a9ae9MD57THUMBNAILdisserta_R_Aranha_EN_.pdf.jpgdisserta_R_Aranha_EN_.pdf.jpgGenerated Thumbnailimage/jpeg2577https://repositorio.fgv.br/bitstreams/78916341-f101-4d8a-ad8f-2c540a82e701/downloadbb59b85a871f6db8dcb52a7da8e0296aMD5810438/276732023-11-03 23:05:08.43open.accessoai:repositorio.fgv.br:10438/27673https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:05:08Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
title A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
spellingShingle A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
Aranha, Renato Santos
Macroscopic Fundamental Diagram
Traffic Theory
GPS bus data
Uber H3
Traffic State
Matemática
Engenharia de tráfego - Modelos matemáticos
Trânsito - Fluxo - Modelos matemáticos
Tráfego urbano - Modelos matemáticos
title_short A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
title_full A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
title_fullStr A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
title_full_unstemmed A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
title_sort A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
author Aranha, Renato Santos
author_facet Aranha, Renato Santos
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EMAp
dc.contributor.member.none.fl_str_mv Souza, Renato Rocha
Silva, Moacyr Alvim Horta Barbosa da
Ogasawara, Eduardo
dc.contributor.author.fl_str_mv Aranha, Renato Santos
dc.contributor.advisor1.fl_str_mv Mendes, Eduardo Fonseca
contributor_str_mv Mendes, Eduardo Fonseca
dc.subject.eng.fl_str_mv Macroscopic Fundamental Diagram
Traffic Theory
GPS bus data
Uber H3
Traffic State
topic Macroscopic Fundamental Diagram
Traffic Theory
GPS bus data
Uber H3
Traffic State
Matemática
Engenharia de tráfego - Modelos matemáticos
Trânsito - Fluxo - Modelos matemáticos
Tráfego urbano - Modelos matemáticos
dc.subject.area.por.fl_str_mv Matemática
dc.subject.bibliodata.por.fl_str_mv Engenharia de tráfego - Modelos matemáticos
Trânsito - Fluxo - Modelos matemáticos
Tráfego urbano - Modelos matemáticos
description Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-07-05T14:25:14Z
dc.date.available.fl_str_mv 2019-07-05T14:25:14Z
dc.date.issued.fl_str_mv 2019-05-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/27673
url https://hdl.handle.net/10438/27673
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/ae66335d-d1eb-4179-a884-7b66e3b66e7b/download
https://repositorio.fgv.br/bitstreams/cc004a63-57a2-4e8d-a606-cc2c9d135d5e/download
https://repositorio.fgv.br/bitstreams/cee7a484-fa82-4641-a534-07407942344b/download
https://repositorio.fgv.br/bitstreams/78916341-f101-4d8a-ad8f-2c540a82e701/download
bitstream.checksum.fl_str_mv e2890fa3c58bd7c86c97f30c7c453957
dfb340242cced38a6cca06c627998fa1
6712fa3e09547a78e41d4015165a9ae9
bb59b85a871f6db8dcb52a7da8e0296a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797840321773568