A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/27673 |
Resumo: | Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed. |
id |
FGV_52a8874423b8450a305d14536ef93d0b |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/27673 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Aranha, Renato SantosEscolas::EMApSouza, Renato RochaSilva, Moacyr Alvim Horta Barbosa daOgasawara, EduardoMendes, Eduardo Fonseca2019-07-05T14:25:14Z2019-07-05T14:25:14Z2019-05-10https://hdl.handle.net/10438/27673Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed.Macroscopic Fundamental DiagramTraffic TheoryGPS bus dataUber H3Traffic StateMatemáticaEngenharia de tráfego - Modelos matemáticosTrânsito - Fluxo - Modelos matemáticosTráfego urbano - Modelos matemáticosA method to estimate the Macroscopic Fundamental Diagram using Bus GPS Datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALdisserta_R_Aranha_EN_.pdfdisserta_R_Aranha_EN_.pdfapplication/pdf3326890https://repositorio.fgv.br/bitstreams/ae66335d-d1eb-4179-a884-7b66e3b66e7b/downloade2890fa3c58bd7c86c97f30c7c453957MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/cc004a63-57a2-4e8d-a606-cc2c9d135d5e/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTdisserta_R_Aranha_EN_.pdf.txtdisserta_R_Aranha_EN_.pdf.txtExtracted texttext/plain80050https://repositorio.fgv.br/bitstreams/cee7a484-fa82-4641-a534-07407942344b/download6712fa3e09547a78e41d4015165a9ae9MD57THUMBNAILdisserta_R_Aranha_EN_.pdf.jpgdisserta_R_Aranha_EN_.pdf.jpgGenerated Thumbnailimage/jpeg2577https://repositorio.fgv.br/bitstreams/78916341-f101-4d8a-ad8f-2c540a82e701/downloadbb59b85a871f6db8dcb52a7da8e0296aMD5810438/276732023-11-03 23:05:08.43open.accessoai:repositorio.fgv.br:10438/27673https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:05:08Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
title |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
spellingShingle |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data Aranha, Renato Santos Macroscopic Fundamental Diagram Traffic Theory GPS bus data Uber H3 Traffic State Matemática Engenharia de tráfego - Modelos matemáticos Trânsito - Fluxo - Modelos matemáticos Tráfego urbano - Modelos matemáticos |
title_short |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
title_full |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
title_fullStr |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
title_full_unstemmed |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
title_sort |
A method to estimate the Macroscopic Fundamental Diagram using Bus GPS Data |
author |
Aranha, Renato Santos |
author_facet |
Aranha, Renato Santos |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
dc.contributor.member.none.fl_str_mv |
Souza, Renato Rocha Silva, Moacyr Alvim Horta Barbosa da Ogasawara, Eduardo |
dc.contributor.author.fl_str_mv |
Aranha, Renato Santos |
dc.contributor.advisor1.fl_str_mv |
Mendes, Eduardo Fonseca |
contributor_str_mv |
Mendes, Eduardo Fonseca |
dc.subject.eng.fl_str_mv |
Macroscopic Fundamental Diagram Traffic Theory GPS bus data Uber H3 Traffic State |
topic |
Macroscopic Fundamental Diagram Traffic Theory GPS bus data Uber H3 Traffic State Matemática Engenharia de tráfego - Modelos matemáticos Trânsito - Fluxo - Modelos matemáticos Tráfego urbano - Modelos matemáticos |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Engenharia de tráfego - Modelos matemáticos Trânsito - Fluxo - Modelos matemáticos Tráfego urbano - Modelos matemáticos |
description |
Some approaches have been proposed by literature to describe the traffic state for a network, such as kinematic wave theory (using concepts from Physics), cell transmission models or macroscopic traffic simulation models. However, many of them have severe limitations regarding traffic state change or require a lot of computation time. For this reason, researchers have been examining for last years the existence of a simple and fast way that can sufficiently describe the dynamics of a road network. As a result, the concept of the Macroscopic Fundamental Diagram (MFD) - an object (empirical relation, theoretical model or both) that relates the average flow to the average density of a network, capturing so the essential network situation - was developed. Once the MFD of the network is known, all that is needed to have a traffic state estimation is to locate where the system is on the MFD at any desired moment, so it serves as a fundamental object for macroscopic traffic flow models. These family of models allow describing the spatio-temporal evolution of traffic density, for instance, and lead to clever solutions that optimize the existing traffic system. Thus, the objective of this project is to present a method for obtaining a network MFD using bus GPS data and a data structure developed by Uber (Uber’s H3 Hexagonal Hierarchical Spatial Index). We use a raw data collection of latitude and longitude data points of buses in Rio de Janeiro, Brazil, from January 2018 to December 2018. It is worth mentioning that the resulting MFD of the proposed method serves as a basis to support the development of public transportation management systems, which is able to make accurate traffic state predictions. The findings confirm the usefulness of bus GPS data and Uber H3 structure in finding a Macroscopic Fundamental Diagram, especially the Density-speed one, and future research directions are addressed. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-07-05T14:25:14Z |
dc.date.available.fl_str_mv |
2019-07-05T14:25:14Z |
dc.date.issued.fl_str_mv |
2019-05-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/27673 |
url |
https://hdl.handle.net/10438/27673 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/ae66335d-d1eb-4179-a884-7b66e3b66e7b/download https://repositorio.fgv.br/bitstreams/cc004a63-57a2-4e8d-a606-cc2c9d135d5e/download https://repositorio.fgv.br/bitstreams/cee7a484-fa82-4641-a534-07407942344b/download https://repositorio.fgv.br/bitstreams/78916341-f101-4d8a-ad8f-2c540a82e701/download |
bitstream.checksum.fl_str_mv |
e2890fa3c58bd7c86c97f30c7c453957 dfb340242cced38a6cca06c627998fa1 6712fa3e09547a78e41d4015165a9ae9 bb59b85a871f6db8dcb52a7da8e0296a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797840321773568 |