Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/13669 |
Resumo: | In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one. |
id |
FGV_5fdfe2523c9bf67eb405922407bacf9b |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/13669 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Silva, Diego MartinsEscolas::EPGEFGVMonteiro, Paulo KlingerBertolai, Jefferson Donizeti PereiraCavalcanti, Ricardo de Oliveira2015-05-04T12:52:33Z2015-05-04T12:52:33Z2015-03-12SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.https://hdl.handle.net/10438/13669In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one.Neste trabalho investigamos a formação de network considerando agentes cautelosos. O modelo consiste em duas regiões com (n/2) bancos em cada, onde a interligação entre eles ocorre através e depósitos interbancários. Cada banco está sujeito a corrida bancária, ou devido a um choque negativo de agentes impacientes, ou devido a contaminação da corrida de um banco pertencente a infraestrutura bancária. Os bancos podem tentar eliminar a possibilidade de contágio ao fazer um número alto de inter-ligações. Para isso, é necessário uma coordenação entre todos os bancos. Se um banco não se prevenir de um contágio, ele impõe a todos os outros a possibilidade de contágio no pior cenário. Há duas regiões bem definidas de equilíbrio de nash simétrico com network estável, uma na qual todos os bancos se previnem do cenário de contágio no pior cenário e a outra na qual nenhum banco se previne. Devido ao problema de coordenação, o equilíbrio com contágio no pior cenário pode ocorrer mesmo sendo pareto dominado pelo equilíbrio sem contágio. Sob certas condições, o equilíbrio com contágio ocorre com um network pareto eficiente. Neste caso o network eficiente é diferente do network mais resiliente ao contágio.porNetwork formationContagionBanksInterbank depositFormação de networkContágioBancosDepósito interbancárioEconomiaBancosFinançasCrise financeiraDepósitos interbancáriosContágio no modelo de Allen e Gale com infraestrutura bancária endógenainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf597953https://repositorio.fgv.br/bitstreams/d8497bde-3306-46b1-930c-d80025261d05/download1bcdbee77f3bef20b251a0774042ebbfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/ca0d65e5-5011-41a6-852f-7df0ad98880b/downloaddfb340242cced38a6cca06c627998fa1MD53TEXTDissertacao_final.pdf.txtDissertacao_final.pdf.txtExtracted Texttext/plain50299https://repositorio.fgv.br/bitstreams/d4c90d5c-d806-41ef-9ae5-44f7a0b0cad2/download5a048593ec0b2a012e5303af7f0a12daMD54PDF.txtPDF.txtExtracted texttext/plain50680https://repositorio.fgv.br/bitstreams/39b6b5c1-7d50-4a09-8c16-e8feee823706/download89a5c2a0c813acded3fe568464e2386dMD56THUMBNAILDissertacao_final.pdf.jpgDissertacao_final.pdf.jpgGenerated Thumbnailimage/jpeg1708https://repositorio.fgv.br/bitstreams/527bcfb7-fbc4-45b7-b607-63fb214e8286/download8530eb7d4cd583b9d06a92a4b8061ab7MD55PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg3072https://repositorio.fgv.br/bitstreams/d3ebce3a-516a-4c90-ae56-c698709548c1/downloadb152c1f331334a7f8d0ae25f709bc7cdMD5710438/136692024-07-08 18:32:44.186open.accessoai:repositorio.fgv.br:10438/13669https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T18:32:44Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
title |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
spellingShingle |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena Silva, Diego Martins Network formation Contagion Banks Interbank deposit Formação de network Contágio Bancos Depósito interbancário Economia Bancos Finanças Crise financeira Depósitos interbancários |
title_short |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
title_full |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
title_fullStr |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
title_full_unstemmed |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
title_sort |
Contágio no modelo de Allen e Gale com infraestrutura bancária endógena |
author |
Silva, Diego Martins |
author_facet |
Silva, Diego Martins |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.member.none.fl_str_mv |
Monteiro, Paulo Klinger Bertolai, Jefferson Donizeti Pereira |
dc.contributor.author.fl_str_mv |
Silva, Diego Martins |
dc.contributor.advisor1.fl_str_mv |
Cavalcanti, Ricardo de Oliveira |
contributor_str_mv |
Cavalcanti, Ricardo de Oliveira |
dc.subject.eng.fl_str_mv |
Network formation Contagion Banks Interbank deposit |
topic |
Network formation Contagion Banks Interbank deposit Formação de network Contágio Bancos Depósito interbancário Economia Bancos Finanças Crise financeira Depósitos interbancários |
dc.subject.por.fl_str_mv |
Formação de network Contágio Bancos Depósito interbancário |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Bancos Finanças Crise financeira Depósitos interbancários |
description |
In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-05-04T12:52:33Z |
dc.date.available.fl_str_mv |
2015-05-04T12:52:33Z |
dc.date.issued.fl_str_mv |
2015-03-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015. |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/13669 |
identifier_str_mv |
SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015. |
url |
https://hdl.handle.net/10438/13669 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/d8497bde-3306-46b1-930c-d80025261d05/download https://repositorio.fgv.br/bitstreams/ca0d65e5-5011-41a6-852f-7df0ad98880b/download https://repositorio.fgv.br/bitstreams/d4c90d5c-d806-41ef-9ae5-44f7a0b0cad2/download https://repositorio.fgv.br/bitstreams/39b6b5c1-7d50-4a09-8c16-e8feee823706/download https://repositorio.fgv.br/bitstreams/527bcfb7-fbc4-45b7-b607-63fb214e8286/download https://repositorio.fgv.br/bitstreams/d3ebce3a-516a-4c90-ae56-c698709548c1/download |
bitstream.checksum.fl_str_mv |
1bcdbee77f3bef20b251a0774042ebbf dfb340242cced38a6cca06c627998fa1 5a048593ec0b2a012e5303af7f0a12da 89a5c2a0c813acded3fe568464e2386d 8530eb7d4cd583b9d06a92a4b8061ab7 b152c1f331334a7f8d0ae25f709bc7cd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797599485886464 |