Contágio no modelo de Allen e Gale com infraestrutura bancária endógena

Detalhes bibliográficos
Autor(a) principal: Silva, Diego Martins
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/13669
Resumo: In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one.
id FGV_5fdfe2523c9bf67eb405922407bacf9b
oai_identifier_str oai:repositorio.fgv.br:10438/13669
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Silva, Diego MartinsEscolas::EPGEFGVMonteiro, Paulo KlingerBertolai, Jefferson Donizeti PereiraCavalcanti, Ricardo de Oliveira2015-05-04T12:52:33Z2015-05-04T12:52:33Z2015-03-12SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.https://hdl.handle.net/10438/13669In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one.Neste trabalho investigamos a formação de network considerando agentes cautelosos. O modelo consiste em duas regiões com (n/2) bancos em cada, onde a interligação entre eles ocorre através e depósitos interbancários. Cada banco está sujeito a corrida bancária, ou devido a um choque negativo de agentes impacientes, ou devido a contaminação da corrida de um banco pertencente a infraestrutura bancária. Os bancos podem tentar eliminar a possibilidade de contágio ao fazer um número alto de inter-ligações. Para isso, é necessário uma coordenação entre todos os bancos. Se um banco não se prevenir de um contágio, ele impõe a todos os outros a possibilidade de contágio no pior cenário. Há duas regiões bem definidas de equilíbrio de nash simétrico com network estável, uma na qual todos os bancos se previnem do cenário de contágio no pior cenário e a outra na qual nenhum banco se previne. Devido ao problema de coordenação, o equilíbrio com contágio no pior cenário pode ocorrer mesmo sendo pareto dominado pelo equilíbrio sem contágio. Sob certas condições, o equilíbrio com contágio ocorre com um network pareto eficiente. Neste caso o network eficiente é diferente do network mais resiliente ao contágio.porNetwork formationContagionBanksInterbank depositFormação de networkContágioBancosDepósito interbancárioEconomiaBancosFinançasCrise financeiraDepósitos interbancáriosContágio no modelo de Allen e Gale com infraestrutura bancária endógenainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf597953https://repositorio.fgv.br/bitstreams/d8497bde-3306-46b1-930c-d80025261d05/download1bcdbee77f3bef20b251a0774042ebbfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/ca0d65e5-5011-41a6-852f-7df0ad98880b/downloaddfb340242cced38a6cca06c627998fa1MD53TEXTDissertacao_final.pdf.txtDissertacao_final.pdf.txtExtracted Texttext/plain50299https://repositorio.fgv.br/bitstreams/d4c90d5c-d806-41ef-9ae5-44f7a0b0cad2/download5a048593ec0b2a012e5303af7f0a12daMD54PDF.txtPDF.txtExtracted texttext/plain50680https://repositorio.fgv.br/bitstreams/39b6b5c1-7d50-4a09-8c16-e8feee823706/download89a5c2a0c813acded3fe568464e2386dMD56THUMBNAILDissertacao_final.pdf.jpgDissertacao_final.pdf.jpgGenerated Thumbnailimage/jpeg1708https://repositorio.fgv.br/bitstreams/527bcfb7-fbc4-45b7-b607-63fb214e8286/download8530eb7d4cd583b9d06a92a4b8061ab7MD55PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg3072https://repositorio.fgv.br/bitstreams/d3ebce3a-516a-4c90-ae56-c698709548c1/downloadb152c1f331334a7f8d0ae25f709bc7cdMD5710438/136692024-07-08 18:32:44.186open.accessoai:repositorio.fgv.br:10438/13669https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T18:32:44Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
title Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
spellingShingle Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
Silva, Diego Martins
Network formation
Contagion
Banks
Interbank deposit
Formação de network
Contágio
Bancos
Depósito interbancário
Economia
Bancos
Finanças
Crise financeira
Depósitos interbancários
title_short Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
title_full Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
title_fullStr Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
title_full_unstemmed Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
title_sort Contágio no modelo de Allen e Gale com infraestrutura bancária endógena
author Silva, Diego Martins
author_facet Silva, Diego Martins
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.member.none.fl_str_mv Monteiro, Paulo Klinger
Bertolai, Jefferson Donizeti Pereira
dc.contributor.author.fl_str_mv Silva, Diego Martins
dc.contributor.advisor1.fl_str_mv Cavalcanti, Ricardo de Oliveira
contributor_str_mv Cavalcanti, Ricardo de Oliveira
dc.subject.eng.fl_str_mv Network formation
Contagion
Banks
Interbank deposit
topic Network formation
Contagion
Banks
Interbank deposit
Formação de network
Contágio
Bancos
Depósito interbancário
Economia
Bancos
Finanças
Crise financeira
Depósitos interbancários
dc.subject.por.fl_str_mv Formação de network
Contágio
Bancos
Depósito interbancário
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Bancos
Finanças
Crise financeira
Depósitos interbancários
description In this work, we analyze network formation with wary agents. The model consists of two regions with (n/2) banks in each, where the connection between them occurs through interbank deposits. A bank run is possible to occur in each bank, due to an increase not expected of impatient agents, or due to contagion from run in another bank. If all banks form a high number of interconnections, they can eliminate possibility of contagion. If one does not prevent a contagion, it imposes all the others banks a positive possibility in the worst case. There are two well-defined regions of symmetric nash equilibrium with stable network, one in which all banks prevents the contagion in the worst case and the other in which no bank prevents. As a result of the coordination problem, equilibrium with contagion in the worst case can occur even pareto dominated by the equilibrium without contagion. Under certain conditions, contagion in the worst case occurs with a network pareto efficient, nevertheless the network is not the most resilient one.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-05-04T12:52:33Z
dc.date.available.fl_str_mv 2015-05-04T12:52:33Z
dc.date.issued.fl_str_mv 2015-03-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/13669
identifier_str_mv SILVA, Diego Martins. Contágio no modelo de Allen e Gale com infraestrutura bancária endógena. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2015.
url https://hdl.handle.net/10438/13669
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/d8497bde-3306-46b1-930c-d80025261d05/download
https://repositorio.fgv.br/bitstreams/ca0d65e5-5011-41a6-852f-7df0ad98880b/download
https://repositorio.fgv.br/bitstreams/d4c90d5c-d806-41ef-9ae5-44f7a0b0cad2/download
https://repositorio.fgv.br/bitstreams/39b6b5c1-7d50-4a09-8c16-e8feee823706/download
https://repositorio.fgv.br/bitstreams/527bcfb7-fbc4-45b7-b607-63fb214e8286/download
https://repositorio.fgv.br/bitstreams/d3ebce3a-516a-4c90-ae56-c698709548c1/download
bitstream.checksum.fl_str_mv 1bcdbee77f3bef20b251a0774042ebbf
dfb340242cced38a6cca06c627998fa1
5a048593ec0b2a012e5303af7f0a12da
89a5c2a0c813acded3fe568464e2386d
8530eb7d4cd583b9d06a92a4b8061ab7
b152c1f331334a7f8d0ae25f709bc7cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797599485886464