Previsões de resultados em partidas do campeonato brasileiro de futebol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/27672 |
Resumo: | Predicting football (soccer) results is a problem that has been explored for decades. The results can be seen from two points of view, predict the score or just to predict the result: win, draw or defeat. When we modeling the number of goals from each team, both points of view can be contemplated, score and result. Since 1950, many approaches have been proposed in order to model the number of goals scored by each team in a match. One of the most explored approaches considers the number of goals scored by each team as a variable following a Poisson distribution. From the first works, a underlying hypothesis was that the number of goals scored by the home team and away team was independent. However, some authors have used approaches that consider correlation in the score of the two teams, either through the use of Bivariate Poisson or the adaptation of the independent model. However, the vast majority of these works were limited to the data about the teams playing the matches and the number of goals scored and concede only. This thesis aims to explore the predictive capacity of different Poisson models proposed in the literature to predict the number of goals scored by each of the teams in a match, in addition to making use of more explanatory variables, such as number of shots, number of shots on target, tackles, all those variables coming from Cartola FC. Each one of the explored models was analyzed from the point of view to correct the true scoreboard of the game, as well as to correct the true result of the match, win, draw or defeat. |
id |
FGV_783dd54a58d4bdbd9895250858eacb2b |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/27672 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Santos, João Marcos Amorim dosEscolas::EMApDemais unidades::RPCATargino, Rodrigo dos SantosCarvalho, Paulo Cezar P.Dana, SamySilva, Moacyr Alvim Horta Barbosa da2019-07-05T14:00:12Z2019-07-05T14:00:12Z2019-04-29https://hdl.handle.net/10438/27672Predicting football (soccer) results is a problem that has been explored for decades. The results can be seen from two points of view, predict the score or just to predict the result: win, draw or defeat. When we modeling the number of goals from each team, both points of view can be contemplated, score and result. Since 1950, many approaches have been proposed in order to model the number of goals scored by each team in a match. One of the most explored approaches considers the number of goals scored by each team as a variable following a Poisson distribution. From the first works, a underlying hypothesis was that the number of goals scored by the home team and away team was independent. However, some authors have used approaches that consider correlation in the score of the two teams, either through the use of Bivariate Poisson or the adaptation of the independent model. However, the vast majority of these works were limited to the data about the teams playing the matches and the number of goals scored and concede only. This thesis aims to explore the predictive capacity of different Poisson models proposed in the literature to predict the number of goals scored by each of the teams in a match, in addition to making use of more explanatory variables, such as number of shots, number of shots on target, tackles, all those variables coming from Cartola FC. Each one of the explored models was analyzed from the point of view to correct the true scoreboard of the game, as well as to correct the true result of the match, win, draw or defeat.Prever resultados de partidas de futebol é um problema que vem sendo explorado há décadas. Tais resultados podem ser vistos por dois pontos de vista, prever o placar ou apenas prever o resultado: vitória, empate ou derrota. Quando se tem modelos que buscam prever a quantidade de gols marcados por cada uma das equipes, ambos pontos de vista do resultado de uma partida podem ser contemplados, placar e resultado. Desde 1950, diferentes abordagens e modelos foram propostos com intuito de modelar a quantidade de gols marcadas por cada time em uma partida. Uma das abordagens mais exploradas foi caracterizar a quantidade de gols marcados por cada uma das equipes como uma variável que segue a distribuição de Poisson. Desde os primeiros trabalhos, uma hipótese trabalhada foi que a quantidade de gols marcados pelo time mandante e visitante seriam independentes. Porém, alguns autores utilizaram abordagens que consideram correlação no placar das duas equipes, sejam elas através do uso da Poisson Bivariada ou da adaptação do modelo independente. Contudo, a grande maioria desses trabalhos esteve limitada a usar como informação apenas os times participantes das partidas e a quantidade de gols marcados e sofridos por cada uma delas. Esta dissertação tem por objetivo explorar a capacidade preditiva de diferentes modelos de Poisson propostos na literatura para prever a quantidade de gols marcados por cada uma das equipes em uma partida, além de fazer uso de mais variáveis explicativas, tais como número de finalizações, número de finalizações certas, roubadas de bola, variáveis essas provenientes do Cartola FC. Cada um dos modelos explorados é analisado tanto do ponto de vista de acertar o verdadeiro placar da partida quanto acertar o verdadeiro resultado da partida, vitória, empate ou derrota.porGoal modelingPoisson distributionBivariate poissonBinomial distributionBinomial distributionMétodos estatísticosModelagem de golsDistribuição de PoissonPoisson BivariadaDistribuição BinomialCampeonato BrasileiroMatemáticaCampeonato Brasileiro (Futebol) - Métodos estatísticosFutebol - Brasil - Modelos matemáticosFutebol - Brasil - Métodos estatísticosPrevisões de resultados em partidas do campeonato brasileiro de futebolinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessFGV EMAp - Dissertações, Mestrado em Modelagem MatemáticaProjetos de Pesquisa AplicadaEsportes em númerosORIGINALjoao_marcos_amorim_dos_santos.pdfjoao_marcos_amorim_dos_santos.pdfapplication/pdf1017153https://repositorio.fgv.br/bitstreams/95e5dac8-5724-488c-8e47-54f81bbd85c4/downloada22e3621740daaf1b6298202af1dce49MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/0dae387f-a2c3-4665-b6f2-e22e4f3a0513/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTjoao_marcos_amorim_dos_santos.pdf.txtjoao_marcos_amorim_dos_santos.pdf.txtExtracted texttext/plain104576https://repositorio.fgv.br/bitstreams/2ab163f9-ba4c-43ab-a198-aca630813422/download90f5aebd2ffc2d39b2a1a35dd7dae8e2MD55THUMBNAILjoao_marcos_amorim_dos_santos.pdf.jpgjoao_marcos_amorim_dos_santos.pdf.jpgGenerated Thumbnailimage/jpeg2828https://repositorio.fgv.br/bitstreams/c13b4e3f-0747-46b0-91b5-a514ea8245aa/downloadfd2cecec9da09e5f34e087ebe147fb56MD5610438/276722023-11-25 02:27:29.746open.accessoai:repositorio.fgv.br:10438/27672https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T02:27:29Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
title |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
spellingShingle |
Previsões de resultados em partidas do campeonato brasileiro de futebol Santos, João Marcos Amorim dos Goal modeling Poisson distribution Bivariate poisson Binomial distribution Binomial distribution Métodos estatísticos Modelagem de gols Distribuição de Poisson Poisson Bivariada Distribuição Binomial Campeonato Brasileiro Matemática Campeonato Brasileiro (Futebol) - Métodos estatísticos Futebol - Brasil - Modelos matemáticos Futebol - Brasil - Métodos estatísticos |
title_short |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
title_full |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
title_fullStr |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
title_full_unstemmed |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
title_sort |
Previsões de resultados em partidas do campeonato brasileiro de futebol |
author |
Santos, João Marcos Amorim dos |
author_facet |
Santos, João Marcos Amorim dos |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp Demais unidades::RPCA |
dc.contributor.member.none.fl_str_mv |
Targino, Rodrigo dos Santos Carvalho, Paulo Cezar P. Dana, Samy |
dc.contributor.author.fl_str_mv |
Santos, João Marcos Amorim dos |
dc.contributor.advisor1.fl_str_mv |
Silva, Moacyr Alvim Horta Barbosa da |
contributor_str_mv |
Silva, Moacyr Alvim Horta Barbosa da |
dc.subject.eng.fl_str_mv |
Goal modeling Poisson distribution Bivariate poisson Binomial distribution Binomial distribution |
topic |
Goal modeling Poisson distribution Bivariate poisson Binomial distribution Binomial distribution Métodos estatísticos Modelagem de gols Distribuição de Poisson Poisson Bivariada Distribuição Binomial Campeonato Brasileiro Matemática Campeonato Brasileiro (Futebol) - Métodos estatísticos Futebol - Brasil - Modelos matemáticos Futebol - Brasil - Métodos estatísticos |
dc.subject.por.fl_str_mv |
Métodos estatísticos Modelagem de gols Distribuição de Poisson Poisson Bivariada Distribuição Binomial Campeonato Brasileiro |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Campeonato Brasileiro (Futebol) - Métodos estatísticos Futebol - Brasil - Modelos matemáticos Futebol - Brasil - Métodos estatísticos |
description |
Predicting football (soccer) results is a problem that has been explored for decades. The results can be seen from two points of view, predict the score or just to predict the result: win, draw or defeat. When we modeling the number of goals from each team, both points of view can be contemplated, score and result. Since 1950, many approaches have been proposed in order to model the number of goals scored by each team in a match. One of the most explored approaches considers the number of goals scored by each team as a variable following a Poisson distribution. From the first works, a underlying hypothesis was that the number of goals scored by the home team and away team was independent. However, some authors have used approaches that consider correlation in the score of the two teams, either through the use of Bivariate Poisson or the adaptation of the independent model. However, the vast majority of these works were limited to the data about the teams playing the matches and the number of goals scored and concede only. This thesis aims to explore the predictive capacity of different Poisson models proposed in the literature to predict the number of goals scored by each of the teams in a match, in addition to making use of more explanatory variables, such as number of shots, number of shots on target, tackles, all those variables coming from Cartola FC. Each one of the explored models was analyzed from the point of view to correct the true scoreboard of the game, as well as to correct the true result of the match, win, draw or defeat. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-07-05T14:00:12Z |
dc.date.available.fl_str_mv |
2019-07-05T14:00:12Z |
dc.date.issued.fl_str_mv |
2019-04-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/27672 |
url |
https://hdl.handle.net/10438/27672 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/95e5dac8-5724-488c-8e47-54f81bbd85c4/download https://repositorio.fgv.br/bitstreams/0dae387f-a2c3-4665-b6f2-e22e4f3a0513/download https://repositorio.fgv.br/bitstreams/2ab163f9-ba4c-43ab-a198-aca630813422/download https://repositorio.fgv.br/bitstreams/c13b4e3f-0747-46b0-91b5-a514ea8245aa/download |
bitstream.checksum.fl_str_mv |
a22e3621740daaf1b6298202af1dce49 dfb340242cced38a6cca06c627998fa1 90f5aebd2ffc2d39b2a1a35dd7dae8e2 fd2cecec9da09e5f34e087ebe147fb56 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797708912132096 |