Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro

Detalhes bibliográficos
Autor(a) principal: Luvizan, Simone da Silva
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/27294
Resumo: Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena.
id FGV_7c3bd740b14c2ee2a078dd895114f62e
oai_identifier_str oai:repositorio.fgv.br:10438/27294
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Luvizan, Simone da SilvaEscolasFrancisco, Eduardo de RezendeTavares, ElaineBecker, João LuizHoppen, NorbertoDiniz, Eduardo Henrique2019-03-28T14:46:47Z2019-03-28T14:46:47Z2019-02-28https://hdl.handle.net/10438/27294Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena.A crescente oferta de dados e de tecnologias para processá-los alavancada pelo Big Data (BD) fomenta as expectativas de geração de inteligência e valor a partir da informação. Nesse cenário, é cada vez mais comum que os dados sejam utilizados para novos fins, distintos daqueles para os quais foram gerados. Essa prática, denominada reúso de dados, oferece grandes oportunidades de desenvolvimento, mas também pode trazer implicações pouco discutidas na academia e na sociedade como um todo. Para contribuir com esse debate, esta tese visa caracterizar o reúso de dados, identificar seus desafios e propor um modelo para explicar como os atores estão lidando com tais desafios na prática. O trabalho concentrou-se no setor financeiro e foi realizado em 3 etapas, dando origem a 3 artigos. O primeiro realiza uma revisão bibliográfica para refletir sobre a literatura existente e uma meta análise de casos reportando reúso de dados em artigos empíricos. A partir dessa meta-análise, é proposto um esquema classificatório para o reúso de dados baseado em duas dimensões: fonte dos dados (pública, privada interna ou externa à organização) e finalidade do reúso (repropósito ou recontextualização). A reflexão sobre os potenciais desafios dos diferentes tipos de reúso sugere que eles podem variar em função da distância entre a geração e o uso dos dados, dando origem a 3 níveis de desafios: direto, intermedial e extremo. O segundo artigo propõe um modelo conceitual para explorar casos de reúso de dados na prática. Inspirado no Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), o modelo utiliza os elementos do contextualismo (Pettigrew, 1985), da SST (Social Shaping of Technology), da abordagem processual (Langley, 1999; Pettigrew, 1997) e do reúso de dados. Nesta etapa, o modelo foi exercitado em um estudo de caso exploratório na empresa Alpha, que oferece uma ferramenta para análise de risco de crédito baseada em perfis comportamentais gerados a partir de dados da rede de celulares. A terceira etapa da pesquisa realizou um estudo de 3 casos, representando diferentes tipos de reúso de dados: um banco (repropósito e recontextualização de dados internos - nível de desafio direto), um bureau de crédito (repropósito de dados externos públicos e privados - nível de desafio intermedial) e fintechs (recontextualização de dados externos públicos e privados - nível de desafio extremo). A análise dos casos identificou as temáticas principais envolvidas em seus desafios e permitiu refletir sobre suas dimensões legais, tecnológicas, intrínsecas, societais e econômicas. Nos casos, o processo pelo qual os atores lidam com os desafios do reúso de dados na prática revelou uma dinâmica cíclica de ajuste/aprendizado e de mobilização. Tal processo é animado por grupos que mobilizam recursos por meio de uma abordagem de posse ou de prática de poder, como também observado em outro estudo de casos envolvendo colaboração complexa. Esse trabalho contribui para o avanço das pesquisas sobre reúso de dados discutindo conceitos e questões relevantes, especialmente para o campo de SI. Suas escolhas metodológicas e teóricas podem inspirar outras pesquisas que compartilhem o desafio de explorar fenômenos complexos.porBig dataAnalyticsReuse of dataMultilevel frameworkInnovation ecosystemReúso de dadosEcossistemas de inovaçãoAdministração de empresasBig dataMineração de dados (Computação)Mercado financeiro - Inovações tecnológicasReúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVTEXTTese - Reuso de Dados na Era do Big Data - final.pdf.txtTese - Reuso de Dados na Era do Big Data - final.pdf.txtExtracted texttext/plain102605https://repositorio.fgv.br/bitstreams/26d339f3-545f-44b5-b8b9-a4c6cfa3bd84/downloadc8e6f698f59064693413b93369acdc64MD55ORIGINALTese - Reuso de Dados na Era do Big Data - final.pdfTese - Reuso de Dados na Era do Big Data - final.pdfPDFapplication/pdf3114445https://repositorio.fgv.br/bitstreams/9f9bbb83-a776-4268-943f-49e295c526b9/downloadbcce4766acf0e6b0cca18759a446cb43MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/03414d15-6f1e-475c-9abd-cd1adfb9789b/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILTese - Reuso de Dados na Era do Big Data - final.pdf.jpgTese - Reuso de Dados na Era do Big Data - final.pdf.jpgGenerated Thumbnailimage/jpeg2395https://repositorio.fgv.br/bitstreams/e00e9bc1-9b19-4570-b99b-8e1a666bb583/downloadd3f2eb4f7778641c120915ef7f3254b5MD5610438/272942024-10-08 13:53:24.894open.accessoai:repositorio.fgv.br:10438/27294https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-10-08T13:53:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
title Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
spellingShingle Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
Luvizan, Simone da Silva
Big data
Analytics
Reuse of data
Multilevel framework
Innovation ecosystem
Reúso de dados
Ecossistemas de inovação
Administração de empresas
Big data
Mineração de dados (Computação)
Mercado financeiro - Inovações tecnológicas
title_short Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
title_full Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
title_fullStr Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
title_full_unstemmed Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
title_sort Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
author Luvizan, Simone da Silva
author_facet Luvizan, Simone da Silva
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas
dc.contributor.member.none.fl_str_mv Francisco, Eduardo de Rezende
Tavares, Elaine
Becker, João Luiz
Hoppen, Norberto
dc.contributor.author.fl_str_mv Luvizan, Simone da Silva
dc.contributor.advisor1.fl_str_mv Diniz, Eduardo Henrique
contributor_str_mv Diniz, Eduardo Henrique
dc.subject.eng.fl_str_mv Big data
Analytics
Reuse of data
Multilevel framework
Innovation ecosystem
topic Big data
Analytics
Reuse of data
Multilevel framework
Innovation ecosystem
Reúso de dados
Ecossistemas de inovação
Administração de empresas
Big data
Mineração de dados (Computação)
Mercado financeiro - Inovações tecnológicas
dc.subject.por.fl_str_mv Reúso de dados
Ecossistemas de inovação
dc.subject.area.por.fl_str_mv Administração de empresas
dc.subject.bibliodata.por.fl_str_mv Big data
Mineração de dados (Computação)
Mercado financeiro - Inovações tecnológicas
description Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-28T14:46:47Z
dc.date.available.fl_str_mv 2019-03-28T14:46:47Z
dc.date.issued.fl_str_mv 2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/27294
url https://hdl.handle.net/10438/27294
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/26d339f3-545f-44b5-b8b9-a4c6cfa3bd84/download
https://repositorio.fgv.br/bitstreams/9f9bbb83-a776-4268-943f-49e295c526b9/download
https://repositorio.fgv.br/bitstreams/03414d15-6f1e-475c-9abd-cd1adfb9789b/download
https://repositorio.fgv.br/bitstreams/e00e9bc1-9b19-4570-b99b-8e1a666bb583/download
bitstream.checksum.fl_str_mv c8e6f698f59064693413b93369acdc64
bcce4766acf0e6b0cca18759a446cb43
dfb340242cced38a6cca06c627998fa1
d3f2eb4f7778641c120915ef7f3254b5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797588206354432