Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/27294 |
Resumo: | Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena. |
id |
FGV_7c3bd740b14c2ee2a078dd895114f62e |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/27294 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Luvizan, Simone da SilvaEscolasFrancisco, Eduardo de RezendeTavares, ElaineBecker, João LuizHoppen, NorbertoDiniz, Eduardo Henrique2019-03-28T14:46:47Z2019-03-28T14:46:47Z2019-02-28https://hdl.handle.net/10438/27294Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena.A crescente oferta de dados e de tecnologias para processá-los alavancada pelo Big Data (BD) fomenta as expectativas de geração de inteligência e valor a partir da informação. Nesse cenário, é cada vez mais comum que os dados sejam utilizados para novos fins, distintos daqueles para os quais foram gerados. Essa prática, denominada reúso de dados, oferece grandes oportunidades de desenvolvimento, mas também pode trazer implicações pouco discutidas na academia e na sociedade como um todo. Para contribuir com esse debate, esta tese visa caracterizar o reúso de dados, identificar seus desafios e propor um modelo para explicar como os atores estão lidando com tais desafios na prática. O trabalho concentrou-se no setor financeiro e foi realizado em 3 etapas, dando origem a 3 artigos. O primeiro realiza uma revisão bibliográfica para refletir sobre a literatura existente e uma meta análise de casos reportando reúso de dados em artigos empíricos. A partir dessa meta-análise, é proposto um esquema classificatório para o reúso de dados baseado em duas dimensões: fonte dos dados (pública, privada interna ou externa à organização) e finalidade do reúso (repropósito ou recontextualização). A reflexão sobre os potenciais desafios dos diferentes tipos de reúso sugere que eles podem variar em função da distância entre a geração e o uso dos dados, dando origem a 3 níveis de desafios: direto, intermedial e extremo. O segundo artigo propõe um modelo conceitual para explorar casos de reúso de dados na prática. Inspirado no Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), o modelo utiliza os elementos do contextualismo (Pettigrew, 1985), da SST (Social Shaping of Technology), da abordagem processual (Langley, 1999; Pettigrew, 1997) e do reúso de dados. Nesta etapa, o modelo foi exercitado em um estudo de caso exploratório na empresa Alpha, que oferece uma ferramenta para análise de risco de crédito baseada em perfis comportamentais gerados a partir de dados da rede de celulares. A terceira etapa da pesquisa realizou um estudo de 3 casos, representando diferentes tipos de reúso de dados: um banco (repropósito e recontextualização de dados internos - nível de desafio direto), um bureau de crédito (repropósito de dados externos públicos e privados - nível de desafio intermedial) e fintechs (recontextualização de dados externos públicos e privados - nível de desafio extremo). A análise dos casos identificou as temáticas principais envolvidas em seus desafios e permitiu refletir sobre suas dimensões legais, tecnológicas, intrínsecas, societais e econômicas. Nos casos, o processo pelo qual os atores lidam com os desafios do reúso de dados na prática revelou uma dinâmica cíclica de ajuste/aprendizado e de mobilização. Tal processo é animado por grupos que mobilizam recursos por meio de uma abordagem de posse ou de prática de poder, como também observado em outro estudo de casos envolvendo colaboração complexa. Esse trabalho contribui para o avanço das pesquisas sobre reúso de dados discutindo conceitos e questões relevantes, especialmente para o campo de SI. Suas escolhas metodológicas e teóricas podem inspirar outras pesquisas que compartilhem o desafio de explorar fenômenos complexos.porBig dataAnalyticsReuse of dataMultilevel frameworkInnovation ecosystemReúso de dadosEcossistemas de inovaçãoAdministração de empresasBig dataMineração de dados (Computação)Mercado financeiro - Inovações tecnológicasReúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVTEXTTese - Reuso de Dados na Era do Big Data - final.pdf.txtTese - Reuso de Dados na Era do Big Data - final.pdf.txtExtracted texttext/plain102605https://repositorio.fgv.br/bitstreams/26d339f3-545f-44b5-b8b9-a4c6cfa3bd84/downloadc8e6f698f59064693413b93369acdc64MD55ORIGINALTese - Reuso de Dados na Era do Big Data - final.pdfTese - Reuso de Dados na Era do Big Data - final.pdfPDFapplication/pdf3114445https://repositorio.fgv.br/bitstreams/9f9bbb83-a776-4268-943f-49e295c526b9/downloadbcce4766acf0e6b0cca18759a446cb43MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/03414d15-6f1e-475c-9abd-cd1adfb9789b/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILTese - Reuso de Dados na Era do Big Data - final.pdf.jpgTese - Reuso de Dados na Era do Big Data - final.pdf.jpgGenerated Thumbnailimage/jpeg2395https://repositorio.fgv.br/bitstreams/e00e9bc1-9b19-4570-b99b-8e1a666bb583/downloadd3f2eb4f7778641c120915ef7f3254b5MD5610438/272942024-10-08 13:53:24.894open.accessoai:repositorio.fgv.br:10438/27294https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-10-08T13:53:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
title |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
spellingShingle |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro Luvizan, Simone da Silva Big data Analytics Reuse of data Multilevel framework Innovation ecosystem Reúso de dados Ecossistemas de inovação Administração de empresas Big data Mineração de dados (Computação) Mercado financeiro - Inovações tecnológicas |
title_short |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
title_full |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
title_fullStr |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
title_full_unstemmed |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
title_sort |
Reúso de dados na era do Big Data: uma jornada rumo a novos paradigmas no setor financeiro |
author |
Luvizan, Simone da Silva |
author_facet |
Luvizan, Simone da Silva |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas |
dc.contributor.member.none.fl_str_mv |
Francisco, Eduardo de Rezende Tavares, Elaine Becker, João Luiz Hoppen, Norberto |
dc.contributor.author.fl_str_mv |
Luvizan, Simone da Silva |
dc.contributor.advisor1.fl_str_mv |
Diniz, Eduardo Henrique |
contributor_str_mv |
Diniz, Eduardo Henrique |
dc.subject.eng.fl_str_mv |
Big data Analytics Reuse of data Multilevel framework Innovation ecosystem |
topic |
Big data Analytics Reuse of data Multilevel framework Innovation ecosystem Reúso de dados Ecossistemas de inovação Administração de empresas Big data Mineração de dados (Computação) Mercado financeiro - Inovações tecnológicas |
dc.subject.por.fl_str_mv |
Reúso de dados Ecossistemas de inovação |
dc.subject.area.por.fl_str_mv |
Administração de empresas |
dc.subject.bibliodata.por.fl_str_mv |
Big data Mineração de dados (Computação) Mercado financeiro - Inovações tecnológicas |
description |
Data and technology increasing availability, intensified by Big Data (BD), stimulate expectations for more intelligence and value creation using existing information. In this scenario, it’s becoming more frequent the use of data for new purposes, different than the ones they were generated for. This growing practice, called reuse of data, brings great development opportunities, but also implications that were poorly discussed by academy and society as a whole. To collaborate with this debate, this thesis aims to characterize the reuse of data, identify its challenges and propose a model to explain how the actors are dealing with those challenges in practice. The study was concentrated in finance sector and was done in 3 steps, generating 3 papers. The first one performed a bibliographic review to pounder about the existing literatures and also a meta-analysis of data reuse empirical cases. Considering this meta-analysis, it’s proposed a classification schema based on two dimensions: data source (internal, external public or private) and reuse purpose (repurpose or recontextualization). The discussion about potential challenges of different reuse of data categories indicates they are influenced by the distance between data generation and use, suggesting 3 levels of challenges: direct, intermediate and extreme. The second paper proposes a theoretical model to explore reuse of data cases in practice. Inspired on Multilevel Framework (Pozzebon, Diniz & Jayo, 2009), the model catches elements of contextualism (Pettigrew, 1985), SST (Social Shaping of Technology), process approach (Langley, 1999; Pettigrew, 1997) and reuse of data. At this stage, the model was exercised in an exploratory case at Alpha, a company that offer a tool for credit risk analysis based on behavioral profiles generated over mobile network data. The third research phase investigated 3 cases, representing different reuse of data types: a bank (repurposing and recontextualization of internal data – level of challenge direct), a credit bureau (repurposing of public or private external data – level of challenge intermediate) and fintechs (recontextualization of public or private external data – level of challenge extreme). The cases analysis identified the main themes involved on challenges and allow the discussion of their legal, technological, intrinsic, societal and economical dimensions. The cases disclosed that the process by which the actors are dealing with the reuse of data challenges in practice is based on a cyclic dynamic of adjustment/learning and mobilization. Such process is animated by groups that mobilize resources through a possession or practice approach, like also showed in other case study involving complex collaboration. This work contributes to advance the research about reuse of data bringing concepts and relevant questions, especially in IS field. Its methodological and theoretical choices can inspire other researches that share the challenge of exploring complex phenomena. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-03-28T14:46:47Z |
dc.date.available.fl_str_mv |
2019-03-28T14:46:47Z |
dc.date.issued.fl_str_mv |
2019-02-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/27294 |
url |
https://hdl.handle.net/10438/27294 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/26d339f3-545f-44b5-b8b9-a4c6cfa3bd84/download https://repositorio.fgv.br/bitstreams/9f9bbb83-a776-4268-943f-49e295c526b9/download https://repositorio.fgv.br/bitstreams/03414d15-6f1e-475c-9abd-cd1adfb9789b/download https://repositorio.fgv.br/bitstreams/e00e9bc1-9b19-4570-b99b-8e1a666bb583/download |
bitstream.checksum.fl_str_mv |
c8e6f698f59064693413b93369acdc64 bcce4766acf0e6b0cca18759a446cb43 dfb340242cced38a6cca06c627998fa1 d3f2eb4f7778641c120915ef7f3254b5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797588206354432 |