Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/35694 |
Resumo: | The global big data market has experienced exponential growth, reflecting the crucial role of Big Data Analytics in modern business strategies. Despite its importance, a fragmented understanding of Big Data remains, particularly regarding its implementation within organizational structures. This fragmentation is evident in the disparities between academic definitions and practical applications. This study aims to bridge the gaps in Big Data Maturity Models through a framework with a holistic view of the main organizational dimensions, aiming to answer the question, “How do the organizations leverage Big Data Analytics Capabilities?”.For this purpose, this research utilizes theories from the literature on Big Data Maturity Models in a case study with semistructured interviews at a large holding company involving 28 respondents in a period between July 2023 and February 2024. This research revealed challenges and practices within the organization that impact the effectiveness of Big Data implementation. It provides a clearer and more practical path for organizations to enhance their Big Data analytics capabilities, focusing on transitions between maturity stages and identifying critical factors influencing these progressions. The developed framework offers practical insights on effectively leveraging data maturity, promoting a more strategic use of Big Data Analytics to improve competitive performance and business agility. This could contribute by demonstrating the relationships of dimensions in an organization with action plans to leverage the use of BD, such as avoiding excess silos and circumventing the difficulties for a unified data strategy, the challenges CDOs face in demonstrating their roles amidst various verticals and how they can be more present and have more influence in leveraging data projects. The allocation of resources for data was also a discovery, given the competition with lower resource products, and the role of managers is important in this issue. Lastly, the difficulty of a unified architecture can be circumvented by more active collaboration between verticals and reference fronts for sharing best practices. These findings contribute to data maturity and a culture with practical methodologies to generate business value. |
id |
FGV_bbb05413b0cb8197046cbbe8f5c516f3 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/35694 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Oliveira, Felippe Eiji Tashiro deEscolas::EAESPTerlizzi, Marco AlexandreCohen, Eric DavidFrancisco, Eduardo de Rezende2024-08-07T15:19:26Z2024-08-07T15:19:26Z2024-06-17https://hdl.handle.net/10438/35694The global big data market has experienced exponential growth, reflecting the crucial role of Big Data Analytics in modern business strategies. Despite its importance, a fragmented understanding of Big Data remains, particularly regarding its implementation within organizational structures. This fragmentation is evident in the disparities between academic definitions and practical applications. This study aims to bridge the gaps in Big Data Maturity Models through a framework with a holistic view of the main organizational dimensions, aiming to answer the question, “How do the organizations leverage Big Data Analytics Capabilities?”.For this purpose, this research utilizes theories from the literature on Big Data Maturity Models in a case study with semistructured interviews at a large holding company involving 28 respondents in a period between July 2023 and February 2024. This research revealed challenges and practices within the organization that impact the effectiveness of Big Data implementation. It provides a clearer and more practical path for organizations to enhance their Big Data analytics capabilities, focusing on transitions between maturity stages and identifying critical factors influencing these progressions. The developed framework offers practical insights on effectively leveraging data maturity, promoting a more strategic use of Big Data Analytics to improve competitive performance and business agility. This could contribute by demonstrating the relationships of dimensions in an organization with action plans to leverage the use of BD, such as avoiding excess silos and circumventing the difficulties for a unified data strategy, the challenges CDOs face in demonstrating their roles amidst various verticals and how they can be more present and have more influence in leveraging data projects. The allocation of resources for data was also a discovery, given the competition with lower resource products, and the role of managers is important in this issue. Lastly, the difficulty of a unified architecture can be circumvented by more active collaboration between verticals and reference fronts for sharing best practices. These findings contribute to data maturity and a culture with practical methodologies to generate business value.O mercado global de big data tem registado um crescimento exponencial, refletindo o papel crucial do Big Data Analytics nas estratégias empresariais modernas. Apesar da sua importância, permanece uma compreensão fragmentada do Big Data, particularmente no que diz respeito à sua implementação nas estruturas organizacionais. Esta fragmentação é evidente nas disparidades entre as definições acadêmicas e as aplicações práticas. Este estudo visa preencher as lacunas nos Modelos de Maturidade de Big Data, através de um framework com uma visão holística das principais dimensões organizacionais, com o objetivo de responder à pergunta “Como as organizações alavancam o nível das capacidades do Big Data Analytics”. Para este motivo, essa pesquisa utiliza teorias da literatura sobre Modelos de Maturidade de Big Data em um estudo de caso com 28 entrevistas semiestruturadas em uma grande holding, no período de Julho de 2023 e Fevereiro de 2024. Esta pesquisa revelou desafios e práticas dentro da organização que impactam a eficácia da implementação de Big Data, fornecendo um caminho mais transparente e prático para as organizações aprimorarem suas capacidades de análise de Big Data, concentrando-se nas transições entre os estágios de maturidade e identificando os fatores críticos que influenciam essas progressões. A estrutura desenvolvida oferece insights práticos sobre como aproveitar efetivamente a maturidade dos dados, promovendo um uso mais estratégico de Big Data Analytics para melhorar o desempenho competitivo e a agilidade dos negócios. Esse pode contribuir demonstrando as relações das dimensões em uma organização com planos de ações para alavancar o uso de BD, tal como evitar o excesso de silos e contornar as dificuldade para uma estratégia unificada de dados, a dificuldade dos CDOs em demonstrar seus papéis em meio a tantas verticais e como ele pode ser mais presente e ter mais força para alavancar os projetos de dados. A Alocação de recursos para dados também foi uma descoberta dado a concorrência com produtos com menores recursos, e o papel do gerentes são importantes nessa questão. E por último a dificuldade de uma arquitetura unificada que pode ser contornada pela colaboração mais ativa entre verticais e frentes de referência para compartilhamento de boas práticas. Essa descobertas colaboram para a maturidade de dados e uma cultura com metodologias práticas para gerar valor para o negócio.engBig data analyticsBig data maturity modelBig data analytics capabilityAdministração de empresasBig dataNegócios - Processamento de dadosHolding companiesAssessing big data maturity in a large holding company: a holistic framework approach for leveraging maturityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdfT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdfPDFapplication/pdf2254345https://repositorio.fgv.br/bitstreams/2e3a17d9-f168-4b57-a51c-11485227d282/download03c7a68430504a672da2792c2a28a657MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/a54939fc-d686-4813-aaed-012795d989c7/download2a4b67231f701c416a809246e7a10077MD52TEXTT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdf.txtT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdf.txtExtracted texttext/plain100306https://repositorio.fgv.br/bitstreams/7690250e-d18e-4d62-b2a0-55675e156fe5/downloadd3b1f36d5ff6b5734cc387cef86cd98eMD53THUMBNAILT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdf.jpgT.A_Big_Data_Maturity_Felippe_Eiji_FINAL.pdf.jpgGenerated Thumbnailimage/jpeg2733https://repositorio.fgv.br/bitstreams/a8f6f87b-28cd-461d-a68a-b6780dcf0e87/download80a4c75145d40f25871613102c9574edMD5410438/356942024-08-08 03:01:57.65open.accessoai:repositorio.fgv.br:10438/35694https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-08-08T03:01:57Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
dc.title.eng.fl_str_mv |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
title |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
spellingShingle |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity Oliveira, Felippe Eiji Tashiro de Big data analytics Big data maturity model Big data analytics capability Administração de empresas Big data Negócios - Processamento de dados Holding companies |
title_short |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
title_full |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
title_fullStr |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
title_full_unstemmed |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
title_sort |
Assessing big data maturity in a large holding company: a holistic framework approach for leveraging maturity |
author |
Oliveira, Felippe Eiji Tashiro de |
author_facet |
Oliveira, Felippe Eiji Tashiro de |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EAESP |
dc.contributor.member.none.fl_str_mv |
Terlizzi, Marco Alexandre Cohen, Eric David |
dc.contributor.author.fl_str_mv |
Oliveira, Felippe Eiji Tashiro de |
dc.contributor.advisor1.fl_str_mv |
Francisco, Eduardo de Rezende |
contributor_str_mv |
Francisco, Eduardo de Rezende |
dc.subject.eng.fl_str_mv |
Big data analytics Big data maturity model Big data analytics capability |
topic |
Big data analytics Big data maturity model Big data analytics capability Administração de empresas Big data Negócios - Processamento de dados Holding companies |
dc.subject.area.por.fl_str_mv |
Administração de empresas |
dc.subject.bibliodata.por.fl_str_mv |
Big data Negócios - Processamento de dados Holding companies |
description |
The global big data market has experienced exponential growth, reflecting the crucial role of Big Data Analytics in modern business strategies. Despite its importance, a fragmented understanding of Big Data remains, particularly regarding its implementation within organizational structures. This fragmentation is evident in the disparities between academic definitions and practical applications. This study aims to bridge the gaps in Big Data Maturity Models through a framework with a holistic view of the main organizational dimensions, aiming to answer the question, “How do the organizations leverage Big Data Analytics Capabilities?”.For this purpose, this research utilizes theories from the literature on Big Data Maturity Models in a case study with semistructured interviews at a large holding company involving 28 respondents in a period between July 2023 and February 2024. This research revealed challenges and practices within the organization that impact the effectiveness of Big Data implementation. It provides a clearer and more practical path for organizations to enhance their Big Data analytics capabilities, focusing on transitions between maturity stages and identifying critical factors influencing these progressions. The developed framework offers practical insights on effectively leveraging data maturity, promoting a more strategic use of Big Data Analytics to improve competitive performance and business agility. This could contribute by demonstrating the relationships of dimensions in an organization with action plans to leverage the use of BD, such as avoiding excess silos and circumventing the difficulties for a unified data strategy, the challenges CDOs face in demonstrating their roles amidst various verticals and how they can be more present and have more influence in leveraging data projects. The allocation of resources for data was also a discovery, given the competition with lower resource products, and the role of managers is important in this issue. Lastly, the difficulty of a unified architecture can be circumvented by more active collaboration between verticals and reference fronts for sharing best practices. These findings contribute to data maturity and a culture with practical methodologies to generate business value. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-08-07T15:19:26Z |
dc.date.available.fl_str_mv |
2024-08-07T15:19:26Z |
dc.date.issued.fl_str_mv |
2024-06-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/35694 |
url |
https://hdl.handle.net/10438/35694 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/2e3a17d9-f168-4b57-a51c-11485227d282/download https://repositorio.fgv.br/bitstreams/a54939fc-d686-4813-aaed-012795d989c7/download https://repositorio.fgv.br/bitstreams/7690250e-d18e-4d62-b2a0-55675e156fe5/download https://repositorio.fgv.br/bitstreams/a8f6f87b-28cd-461d-a68a-b6780dcf0e87/download |
bitstream.checksum.fl_str_mv |
03c7a68430504a672da2792c2a28a657 2a4b67231f701c416a809246e7a10077 d3b1f36d5ff6b5734cc387cef86cd98e 80a4c75145d40f25871613102c9574ed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797809154949120 |