Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional

Detalhes bibliográficos
Autor(a) principal: Simões, Robson de Souza
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/32979
Resumo: The new expected credit loss model defined by the international standard IFRS 9 aims for banks to refine their provision calculation estimates considering both the losses already incurred and those expected in the future. In one of the passages of the IFRS9 it is mentioned that studies must be conducted about the influence of macroeconomic variables on the models used in banks' provision calculations. By identifying those macroeconomic factors that have statistical significance for the historical changes in a portfolio, it is expected that banks will be able to integrate them and thus improve their probability of default calculations. A study that evaluates the relationship between macroeconomic variables and Brazilian default from an IFRS9 perspective will provide inputs that will help financial institutions gain a better understanding of this relationship to adopt the regulatory requirements. The aim of this paper is to demonstrate some methods that assess this relationship and how to proceed to incorporate macroeconomic fluctuations in the default rate. The macroeconomic factors studied are GDP, the IPCA, the exchange, the unemployment rate and the Selic rate. The default rate is based on data from the national credit portfolio of individuals (PF) provided by BACEN, where the default criterion occurs when there is a delay greater than or equal to 90 days in the payment of credit obligations, and the period used was from Jan/2019 to Jan/2022 Multivariate regression model and ARIMAX model are used to explain the relationship between macroeconomic factors and default rate. The results show that GDP is the main statistically significant macroeconomic factor for detecting changes in default rate and consequently in the calculation of expected credit loss
id FGV_8e4d5108f9fcd45a302d76325589f4b0
oai_identifier_str oai:repositorio.fgv.br:10438/32979
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Simões, Robson de SouzaEscolas::EESPOliveira, AlexandreValle, Oswaldo Luiz da CostaPinto, Afonso de Campos2022-12-13T13:16:47Z2022-12-13T13:16:47Z2022-09https://hdl.handle.net/10438/32979The new expected credit loss model defined by the international standard IFRS 9 aims for banks to refine their provision calculation estimates considering both the losses already incurred and those expected in the future. In one of the passages of the IFRS9 it is mentioned that studies must be conducted about the influence of macroeconomic variables on the models used in banks' provision calculations. By identifying those macroeconomic factors that have statistical significance for the historical changes in a portfolio, it is expected that banks will be able to integrate them and thus improve their probability of default calculations. A study that evaluates the relationship between macroeconomic variables and Brazilian default from an IFRS9 perspective will provide inputs that will help financial institutions gain a better understanding of this relationship to adopt the regulatory requirements. The aim of this paper is to demonstrate some methods that assess this relationship and how to proceed to incorporate macroeconomic fluctuations in the default rate. The macroeconomic factors studied are GDP, the IPCA, the exchange, the unemployment rate and the Selic rate. The default rate is based on data from the national credit portfolio of individuals (PF) provided by BACEN, where the default criterion occurs when there is a delay greater than or equal to 90 days in the payment of credit obligations, and the period used was from Jan/2019 to Jan/2022 Multivariate regression model and ARIMAX model are used to explain the relationship between macroeconomic factors and default rate. The results show that GDP is the main statistically significant macroeconomic factor for detecting changes in default rate and consequently in the calculation of expected credit lossO novo modelo de perdas esperadas de crédito definido pela norma internacional IFRS 9 tem como objetivo que os bancos refinam suas estimativas de cálculo de provisão considerando tanto as perdas já incorridas quanto aquelas esperadas no futura. Em um dos trechos da norma é mencionado que sejam realizados estudos sobre a influência de variáveis macroeconômicas nos modelos utilizados no cálculo de provisão dos bancos. Ao identificar esses fatores macroeconômicos que têm significado estatístico para as mudanças históricas de uma carteira, espera-se que os bancos sejam capazes de integrá-los e assim melhorar a sua probabilidade de inadimplência. Um estudo que avalie a relação entre variáveis macroeconômicas e inadimplência brasileira sob a ótica de IFRS9, trará insumos que ajudarão as instituições financeiras a terem uma compreensão maior dessa relação para adotarem os requisitos normativos. O objetivo desse trabalho é demonstrar alguns métodos que avaliam essa relação e como proceder para incorporar as oscilações macroeconômicas na taxa de inadimplência. Os fatores macroeconômicos estudados são o PIB, o IPCA, a Taxa de Desemprego e a taxa Selic. A taxa de inadimplência baseia-se nos dados da carteira de crédito nacional pessoa física (PF) disponibilizada pelo BACEN, onde o critério de inadimplência ocorre quando há um atraso superior o igual a 90 dias no pagamento das obrigações creditícias, e o período utilizado foi de jan/2019 à jan/2022. O modelo de regressão multivariada e o modelo ARIMAX são utilizados para explicar a relação entre os fatores macroeconômicos e taxa de inadimplência. Os resultados mostram que o PIB é o principal fator macroeconômico estatisticamente significativo para detecção de alterações na taxa de inadimplência e, consequentemente, no cálculo da perda esperada de crédito.porExpected credit lossDefault rateMacroeconomic factorsMultivariate regression modelPerda esperada de créditoIFRS 9Taxa de inadimplênciaFatores macroeconômicosModelo de regressão multivariadaARIMAXEconomiaCréditos - Avaliação de riscosBancos - BrasilContabilidade - NormasInadimplência (Finanças)Análise de regressãoModelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdf2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdfPDFapplication/pdf850806https://repositorio.fgv.br/bitstreams/8ca6d604-a9e6-4c80-ad54-e757374480e1/download5dbc533259deefe7f00c28e161504cadMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/dddddddf-4c84-40db-af4e-5b440ce26cac/downloaddfb340242cced38a6cca06c627998fa1MD52TEXT2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdf.txt2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdf.txtExtracted texttext/plain91427https://repositorio.fgv.br/bitstreams/0d5fb09b-7b34-4bf8-9f27-131f48f714dc/download70dc2a38ff2c4b195d8de55b3e526939MD55THUMBNAIL2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdf.jpg2022.12.08 - Robson Simões - Dissertacao_MPEF_2022.pdf.jpgGenerated Thumbnailimage/jpeg2684https://repositorio.fgv.br/bitstreams/497553b5-fb55-4ca7-ac06-894cdf23702b/downloada5e476481336e5f7f5acace8f65aa0bfMD5610438/329792023-11-26 04:20:11.633open.accessoai:repositorio.fgv.br:10438/32979https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-26T04:20:11Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
title Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
spellingShingle Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
Simões, Robson de Souza
Expected credit loss
Default rate
Macroeconomic factors
Multivariate regression model
Perda esperada de crédito
IFRS 9
Taxa de inadimplência
Fatores macroeconômicos
Modelo de regressão multivariada
ARIMAX
Economia
Créditos - Avaliação de riscos
Bancos - Brasil
Contabilidade - Normas
Inadimplência (Finanças)
Análise de regressão
title_short Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
title_full Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
title_fullStr Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
title_full_unstemmed Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
title_sort Modelagem da PD forward looking: uma análise de impacto dos fatores macroeconômicos na inadimplência bancária nacional
author Simões, Robson de Souza
author_facet Simões, Robson de Souza
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Oliveira, Alexandre
Valle, Oswaldo Luiz da Costa
dc.contributor.author.fl_str_mv Simões, Robson de Souza
dc.contributor.advisor1.fl_str_mv Pinto, Afonso de Campos
contributor_str_mv Pinto, Afonso de Campos
dc.subject.eng.fl_str_mv Expected credit loss
Default rate
Macroeconomic factors
Multivariate regression model
topic Expected credit loss
Default rate
Macroeconomic factors
Multivariate regression model
Perda esperada de crédito
IFRS 9
Taxa de inadimplência
Fatores macroeconômicos
Modelo de regressão multivariada
ARIMAX
Economia
Créditos - Avaliação de riscos
Bancos - Brasil
Contabilidade - Normas
Inadimplência (Finanças)
Análise de regressão
dc.subject.por.fl_str_mv Perda esperada de crédito
IFRS 9
Taxa de inadimplência
Fatores macroeconômicos
Modelo de regressão multivariada
ARIMAX
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Créditos - Avaliação de riscos
Bancos - Brasil
Contabilidade - Normas
Inadimplência (Finanças)
Análise de regressão
description The new expected credit loss model defined by the international standard IFRS 9 aims for banks to refine their provision calculation estimates considering both the losses already incurred and those expected in the future. In one of the passages of the IFRS9 it is mentioned that studies must be conducted about the influence of macroeconomic variables on the models used in banks' provision calculations. By identifying those macroeconomic factors that have statistical significance for the historical changes in a portfolio, it is expected that banks will be able to integrate them and thus improve their probability of default calculations. A study that evaluates the relationship between macroeconomic variables and Brazilian default from an IFRS9 perspective will provide inputs that will help financial institutions gain a better understanding of this relationship to adopt the regulatory requirements. The aim of this paper is to demonstrate some methods that assess this relationship and how to proceed to incorporate macroeconomic fluctuations in the default rate. The macroeconomic factors studied are GDP, the IPCA, the exchange, the unemployment rate and the Selic rate. The default rate is based on data from the national credit portfolio of individuals (PF) provided by BACEN, where the default criterion occurs when there is a delay greater than or equal to 90 days in the payment of credit obligations, and the period used was from Jan/2019 to Jan/2022 Multivariate regression model and ARIMAX model are used to explain the relationship between macroeconomic factors and default rate. The results show that GDP is the main statistically significant macroeconomic factor for detecting changes in default rate and consequently in the calculation of expected credit loss
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-13T13:16:47Z
dc.date.available.fl_str_mv 2022-12-13T13:16:47Z
dc.date.issued.fl_str_mv 2022-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/32979
url https://hdl.handle.net/10438/32979
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/8ca6d604-a9e6-4c80-ad54-e757374480e1/download
https://repositorio.fgv.br/bitstreams/dddddddf-4c84-40db-af4e-5b440ce26cac/download
https://repositorio.fgv.br/bitstreams/0d5fb09b-7b34-4bf8-9f27-131f48f714dc/download
https://repositorio.fgv.br/bitstreams/497553b5-fb55-4ca7-ac06-894cdf23702b/download
bitstream.checksum.fl_str_mv 5dbc533259deefe7f00c28e161504cad
dfb340242cced38a6cca06c627998fa1
70dc2a38ff2c4b195d8de55b3e526939
a5e476481336e5f7f5acace8f65aa0bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797710868774912