Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version)
Autor(a) principal: | |
---|---|
Data de Publicação: | 1993 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/935 |
Resumo: | We define Nash equilibrium for two-person normal form games in the presence of uncertainty, in the sense of Knight(1921). We use the fonna1iution of uncertainty due to Schmeidler and Gilboa. We show tbat there exist Nash equilibria for any degree of uncertainty, as measured by the uncertainty aversion (Dow anel Wer1ang(l992a». We show by example tbat prudent behaviour (maxmin) can be obtained as an outcome even when it is not rationaliuble in the usual sense. Next, we break down backward industion in the twice repeated prisoner's dilemma. We link these results with those on cooperation in the finitely repeated prisoner's dilemma obtained by Kreps-Milgrom-Roberts-Wdson(1982), and withthe 1iterature on epistemological conditions underlying Nash equilibrium. The knowledge notion implicit in this mode1 of equilibrium does not display logical omniscience. |
id |
FGV_9973f801449e9bb529b1c6f2d98a6b76 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/935 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Dow, JamesWerlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:41:57Z2008-05-13T15:41:57Z1993-040104-8910http://hdl.handle.net/10438/935We define Nash equilibrium for two-person normal form games in the presence of uncertainty, in the sense of Knight(1921). We use the fonna1iution of uncertainty due to Schmeidler and Gilboa. We show tbat there exist Nash equilibria for any degree of uncertainty, as measured by the uncertainty aversion (Dow anel Wer1ang(l992a». We show by example tbat prudent behaviour (maxmin) can be obtained as an outcome even when it is not rationaliuble in the usual sense. Next, we break down backward industion in the twice repeated prisoner's dilemma. We link these results with those on cooperation in the finitely repeated prisoner's dilemma obtained by Kreps-Milgrom-Roberts-Wdson(1982), and withthe 1iterature on epistemological conditions underlying Nash equilibrium. The knowledge notion implicit in this mode1 of equilibrium does not display logical omniscience.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;213Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessNash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaEconomia matemáticaEconomiareponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL213_000058957.pdf213_000058957.pdfapplication/pdf1259112https://repositorio.fgv.br/bitstreams/5c13e626-9950-44e6-a397-340856564120/downloadf184097ed7d21bd4b6f6e0fda4e905fbMD51TEXT213_000058957.pdf.txt213_000058957.pdf.txtExtracted texttext/plain62632https://repositorio.fgv.br/bitstreams/6941cdaf-ccf9-4924-9363-001c56cf7b75/downloadfddff5ef96d1189e39145538f5dfcf60MD56THUMBNAIL213_000058957.pdf.jpg213_000058957.pdf.jpgGenerated Thumbnailimage/jpeg2207https://repositorio.fgv.br/bitstreams/4e165e66-fba8-464e-8b7b-5372046dbc5b/downloadfc2a674f5e8d8689f554b0d22a507456MD5710438/9352023-11-08 23:41:24.966open.accessoai:repositorio.fgv.br:10438/935https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T23:41:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
title |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
spellingShingle |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) Dow, James Economia Economia matemática Economia |
title_short |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
title_full |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
title_fullStr |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
title_full_unstemmed |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
title_sort |
Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) |
author |
Dow, James |
author_facet |
Dow, James Werlang, Sérgio Ribeiro da Costa |
author_role |
author |
author2 |
Werlang, Sérgio Ribeiro da Costa |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Dow, James Werlang, Sérgio Ribeiro da Costa |
dc.subject.area.por.fl_str_mv |
Economia |
topic |
Economia Economia matemática Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia matemática Economia |
description |
We define Nash equilibrium for two-person normal form games in the presence of uncertainty, in the sense of Knight(1921). We use the fonna1iution of uncertainty due to Schmeidler and Gilboa. We show tbat there exist Nash equilibria for any degree of uncertainty, as measured by the uncertainty aversion (Dow anel Wer1ang(l992a». We show by example tbat prudent behaviour (maxmin) can be obtained as an outcome even when it is not rationaliuble in the usual sense. Next, we break down backward industion in the twice repeated prisoner's dilemma. We link these results with those on cooperation in the finitely repeated prisoner's dilemma obtained by Kreps-Milgrom-Roberts-Wdson(1982), and withthe 1iterature on epistemological conditions underlying Nash equilibrium. The knowledge notion implicit in this mode1 of equilibrium does not display logical omniscience. |
publishDate |
1993 |
dc.date.issued.fl_str_mv |
1993-04 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:41:57Z |
dc.date.available.fl_str_mv |
2008-05-13T15:41:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/935 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;213 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/5c13e626-9950-44e6-a397-340856564120/download https://repositorio.fgv.br/bitstreams/6941cdaf-ccf9-4924-9363-001c56cf7b75/download https://repositorio.fgv.br/bitstreams/4e165e66-fba8-464e-8b7b-5372046dbc5b/download |
bitstream.checksum.fl_str_mv |
f184097ed7d21bd4b6f6e0fda4e905fb fddff5ef96d1189e39145538f5dfcf60 fc2a674f5e8d8689f554b0d22a507456 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797789772021760 |