A notion of subgame perfect Nash equilibrium under knightian uncertainty
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/984 |
Resumo: | We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game. |
id |
FGV_87042e4ad1b8c8855d077eb0d0658c42 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/984 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Werlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:45:07Z2010-09-23T18:57:39Z2008-05-13T15:45:07Z2010-09-23T18:57:39Z2000-03-010104-8910http://hdl.handle.net/10438/984We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;376A notion of subgame perfect Nash equilibrium under knightian uncertaintyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaEconomiareponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTHUMBNAIL1222.pdf.jpg1222.pdf.jpgGenerated Thumbnailimage/jpeg4297https://repositorio.fgv.br/bitstreams/a6ea7059-05c3-4772-957b-00c07af69ebf/downloade8d57150e1991e59ce3cf5fb90cf700bMD59TEXT1222.pdf.txt1222.pdf.txtExtracted texttext/plain23506https://repositorio.fgv.br/bitstreams/45e57b02-d960-493e-b1eb-aa927967d2a9/downloada4a442f36c06e0765935b4ba9ce67b54MD58ORIGINAL1222.pdfapplication/pdf272411https://repositorio.fgv.br/bitstreams/178665f5-08ec-4401-81c8-d996ee3ca571/download84ccfd455f5449eae57cdadef261004bMD5310438/9842023-11-08 16:10:58.676open.accessoai:repositorio.fgv.br:10438/984https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T16:10:58Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
title |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
spellingShingle |
A notion of subgame perfect Nash equilibrium under knightian uncertainty Werlang, Sérgio Ribeiro da Costa Economia Economia |
title_short |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
title_full |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
title_fullStr |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
title_full_unstemmed |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
title_sort |
A notion of subgame perfect Nash equilibrium under knightian uncertainty |
author |
Werlang, Sérgio Ribeiro da Costa |
author_facet |
Werlang, Sérgio Ribeiro da Costa |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Werlang, Sérgio Ribeiro da Costa |
dc.subject.area.por.fl_str_mv |
Economia |
topic |
Economia Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia |
description |
We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game. |
publishDate |
2000 |
dc.date.issued.fl_str_mv |
2000-03-01 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:45:07Z 2010-09-23T18:57:39Z |
dc.date.available.fl_str_mv |
2008-05-13T15:45:07Z 2010-09-23T18:57:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/984 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/984 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;376 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/a6ea7059-05c3-4772-957b-00c07af69ebf/download https://repositorio.fgv.br/bitstreams/45e57b02-d960-493e-b1eb-aa927967d2a9/download https://repositorio.fgv.br/bitstreams/178665f5-08ec-4401-81c8-d996ee3ca571/download |
bitstream.checksum.fl_str_mv |
e8d57150e1991e59ce3cf5fb90cf700b a4a442f36c06e0765935b4ba9ce67b54 84ccfd455f5449eae57cdadef261004b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797658121207808 |