A notion of subgame perfect Nash equilibrium under knightian uncertainty

Detalhes bibliográficos
Autor(a) principal: Werlang, Sérgio Ribeiro da Costa
Data de Publicação: 2000
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/984
Resumo: We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.
id FGV_87042e4ad1b8c8855d077eb0d0658c42
oai_identifier_str oai:repositorio.fgv.br:10438/984
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Werlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:45:07Z2010-09-23T18:57:39Z2008-05-13T15:45:07Z2010-09-23T18:57:39Z2000-03-010104-8910http://hdl.handle.net/10438/984We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;376A notion of subgame perfect Nash equilibrium under knightian uncertaintyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaEconomiareponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTHUMBNAIL1222.pdf.jpg1222.pdf.jpgGenerated Thumbnailimage/jpeg4297https://repositorio.fgv.br/bitstreams/a6ea7059-05c3-4772-957b-00c07af69ebf/downloade8d57150e1991e59ce3cf5fb90cf700bMD59TEXT1222.pdf.txt1222.pdf.txtExtracted texttext/plain23506https://repositorio.fgv.br/bitstreams/45e57b02-d960-493e-b1eb-aa927967d2a9/downloada4a442f36c06e0765935b4ba9ce67b54MD58ORIGINAL1222.pdfapplication/pdf272411https://repositorio.fgv.br/bitstreams/178665f5-08ec-4401-81c8-d996ee3ca571/download84ccfd455f5449eae57cdadef261004bMD5310438/9842023-11-08 16:10:58.676open.accessoai:repositorio.fgv.br:10438/984https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T16:10:58Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv A notion of subgame perfect Nash equilibrium under knightian uncertainty
title A notion of subgame perfect Nash equilibrium under knightian uncertainty
spellingShingle A notion of subgame perfect Nash equilibrium under knightian uncertainty
Werlang, Sérgio Ribeiro da Costa
Economia
Economia
title_short A notion of subgame perfect Nash equilibrium under knightian uncertainty
title_full A notion of subgame perfect Nash equilibrium under knightian uncertainty
title_fullStr A notion of subgame perfect Nash equilibrium under knightian uncertainty
title_full_unstemmed A notion of subgame perfect Nash equilibrium under knightian uncertainty
title_sort A notion of subgame perfect Nash equilibrium under knightian uncertainty
author Werlang, Sérgio Ribeiro da Costa
author_facet Werlang, Sérgio Ribeiro da Costa
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Werlang, Sérgio Ribeiro da Costa
dc.subject.area.por.fl_str_mv Economia
topic Economia
Economia
dc.subject.bibliodata.por.fl_str_mv Economia
description We define a subgame perfect Nash equilibrium under Knightian uncertainty for two players, by means of a recursive backward induction procedure. We prove an extension of the Zermelo-von Neumann-Kuhn Theorem for games of perfect information, i. e., that the recursive procedure generates a Nash equilibrium under uncertainty (Dow and Werlang(1994)) of the whole game. We apply the notion for two well known games: the chain store and the centipede. On the one hand, we show that subgame perfection under Knightian uncertainty explains the chain store paradox in a one shot version. On the other hand, we show that subgame perfection under uncertainty does not account for the leaving behavior observed in the centipede game. This is in contrast to Dow, Orioli and Werlang(1996) where we explain by means of Nash equilibria under uncertainty (but not subgame perfect) the experiments of McKelvey and Palfrey(1992). Finally, we show that there may be nontrivial subgame perfect equilibria under uncertainty in more complex extensive form games, as in the case of the finitely repeated prisoner's dilemma, which accounts for cooperation in early stages of the game.
publishDate 2000
dc.date.issued.fl_str_mv 2000-03-01
dc.date.accessioned.fl_str_mv 2008-05-13T15:45:07Z
2010-09-23T18:57:39Z
dc.date.available.fl_str_mv 2008-05-13T15:45:07Z
2010-09-23T18:57:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/984
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/984
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;376
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/a6ea7059-05c3-4772-957b-00c07af69ebf/download
https://repositorio.fgv.br/bitstreams/45e57b02-d960-493e-b1eb-aa927967d2a9/download
https://repositorio.fgv.br/bitstreams/178665f5-08ec-4401-81c8-d996ee3ca571/download
bitstream.checksum.fl_str_mv e8d57150e1991e59ce3cf5fb90cf700b
a4a442f36c06e0765935b4ba9ce67b54
84ccfd455f5449eae57cdadef261004b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797658121207808