Uma resenha sobre modelos de apreçamento de derivativos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/10298 |
Resumo: | I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data. |
id |
FGV_a2adea85d51e994e3fe173efd4e2de80 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/10298 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Guimarães, Pedro Henrique EngelEscolas::EPGEFGVNazareth, Marcelo de Oliveira e CostaVicente, José Valentim MachadoAlmeida, Caio Ibsen Rodrigues de2012-12-20T16:42:10Z2012-12-20T16:42:10Z2012-06-29GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012.https://hdl.handle.net/10438/10298I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data.Apresento aqui uma abordagem que unifica a literatura sobre os vários modelos de apreçamento de derivativos que consiste em obter por argumentos intuitivos de não arbitragem uma Equação Diferencial Parcial(EDP) e através do método de Feynman-Kac uma solução que é representada por uma esperança condicional de um processo markoviano do preço do derivativo descontado pela taxa livre de risco. Por este resultado, temos que a esperança deve ser tomada com relação a processos que crescem à taxa livre de risco e por este motivo dizemos que a esperança é tomada em um mundo neutro ao risco(ou medida neutra ao risco). Apresento ainda como realizar uma mudança de medida pertinente que conecta o mundo real ao mundo neutro ao risco e que o elemento chave para essa mudança de medida é o preço de mercado dos fatores de risco. No caso de mercado completo o preço de mercado do fator de risco é único e no caso de mercados incompletos existe uma variedade de preços aceitáveis para os fatores de risco pelo argumento de não arbitragem. Neste último caso, os preços de mercado são geralmente escolhidos de forma a calibrar o modelo com os dados de mercado.porEquação diferencial parcialFeynman-KacFator de riscoPreço do derivativoDerivatives pricePartial differential equationFactor riskEconomiaDerivativos (Finanças)PreçosRisco (Economia)Equações diferenciaisUma resenha sobre modelos de apreçamento de derivativosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf709819https://repositorio.fgv.br/bitstreams/4ae06900-9241-4e65-9a14-8d208b5cde24/download11a410ca7be737e1b89ed81a75cd3a0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/1a9bbbfe-af59-4d9d-b8c6-d4426fbb0b30/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertação.pdf.txtDissertação.pdf.txtExtracted Texttext/plain145611https://repositorio.fgv.br/bitstreams/2891d4c3-7f4d-4d26-b822-4c103a6d62cc/download862d3feb7c4730b4936894cd6ec15f28MD53PDF.txtPDF.txtExtracted texttext/plain106940https://repositorio.fgv.br/bitstreams/d5546d77-ee45-4d9a-b7bc-26871d60d38c/download5fda11e67fd9c78f5d38b4aa2289bd8fMD55THUMBNAILDissertação.pdf.jpgDissertação.pdf.jpgGenerated Thumbnailimage/jpeg1631https://repositorio.fgv.br/bitstreams/e4e37242-a03e-4a74-a8f0-1d06ac00a121/downloadb37a91dffc83f10cbad66702ffb745afMD54PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg2983https://repositorio.fgv.br/bitstreams/0a6a823f-8994-4c49-b70d-4a385d88e209/download42377073ca4119a9a7163cc4a8b04facMD5610438/102982024-07-08 19:00:41.745open.accessoai:repositorio.fgv.br:10438/10298https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T19:00:41Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Uma resenha sobre modelos de apreçamento de derivativos |
title |
Uma resenha sobre modelos de apreçamento de derivativos |
spellingShingle |
Uma resenha sobre modelos de apreçamento de derivativos Guimarães, Pedro Henrique Engel Equação diferencial parcial Feynman-Kac Fator de risco Preço do derivativo Derivatives price Partial differential equation Factor risk Economia Derivativos (Finanças) Preços Risco (Economia) Equações diferenciais |
title_short |
Uma resenha sobre modelos de apreçamento de derivativos |
title_full |
Uma resenha sobre modelos de apreçamento de derivativos |
title_fullStr |
Uma resenha sobre modelos de apreçamento de derivativos |
title_full_unstemmed |
Uma resenha sobre modelos de apreçamento de derivativos |
title_sort |
Uma resenha sobre modelos de apreçamento de derivativos |
author |
Guimarães, Pedro Henrique Engel |
author_facet |
Guimarães, Pedro Henrique Engel |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.member.none.fl_str_mv |
Nazareth, Marcelo de Oliveira e Costa Vicente, José Valentim Machado |
dc.contributor.author.fl_str_mv |
Guimarães, Pedro Henrique Engel |
dc.contributor.advisor1.fl_str_mv |
Almeida, Caio Ibsen Rodrigues de |
contributor_str_mv |
Almeida, Caio Ibsen Rodrigues de |
dc.subject.por.fl_str_mv |
Equação diferencial parcial Feynman-Kac Fator de risco Preço do derivativo |
topic |
Equação diferencial parcial Feynman-Kac Fator de risco Preço do derivativo Derivatives price Partial differential equation Factor risk Economia Derivativos (Finanças) Preços Risco (Economia) Equações diferenciais |
dc.subject.eng.fl_str_mv |
Derivatives price Partial differential equation Factor risk |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Derivativos (Finanças) Preços Risco (Economia) Equações diferenciais |
description |
I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data. |
publishDate |
2012 |
dc.date.accessioned.fl_str_mv |
2012-12-20T16:42:10Z |
dc.date.available.fl_str_mv |
2012-12-20T16:42:10Z |
dc.date.issued.fl_str_mv |
2012-06-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012. |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/10298 |
identifier_str_mv |
GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012. |
url |
https://hdl.handle.net/10438/10298 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/4ae06900-9241-4e65-9a14-8d208b5cde24/download https://repositorio.fgv.br/bitstreams/1a9bbbfe-af59-4d9d-b8c6-d4426fbb0b30/download https://repositorio.fgv.br/bitstreams/2891d4c3-7f4d-4d26-b822-4c103a6d62cc/download https://repositorio.fgv.br/bitstreams/d5546d77-ee45-4d9a-b7bc-26871d60d38c/download https://repositorio.fgv.br/bitstreams/e4e37242-a03e-4a74-a8f0-1d06ac00a121/download https://repositorio.fgv.br/bitstreams/0a6a823f-8994-4c49-b70d-4a385d88e209/download |
bitstream.checksum.fl_str_mv |
11a410ca7be737e1b89ed81a75cd3a0d dfb340242cced38a6cca06c627998fa1 862d3feb7c4730b4936894cd6ec15f28 5fda11e67fd9c78f5d38b4aa2289bd8f b37a91dffc83f10cbad66702ffb745af 42377073ca4119a9a7163cc4a8b04fac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797785257902080 |