Uma resenha sobre modelos de apreçamento de derivativos

Detalhes bibliográficos
Autor(a) principal: Guimarães, Pedro Henrique Engel
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/10298
Resumo: I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data.
id FGV_a2adea85d51e994e3fe173efd4e2de80
oai_identifier_str oai:repositorio.fgv.br:10438/10298
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Guimarães, Pedro Henrique EngelEscolas::EPGEFGVNazareth, Marcelo de Oliveira e CostaVicente, José Valentim MachadoAlmeida, Caio Ibsen Rodrigues de2012-12-20T16:42:10Z2012-12-20T16:42:10Z2012-06-29GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012.https://hdl.handle.net/10438/10298I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data.Apresento aqui uma abordagem que unifica a literatura sobre os vários modelos de apreçamento de derivativos que consiste em obter por argumentos intuitivos de não arbitragem uma Equação Diferencial Parcial(EDP) e através do método de Feynman-Kac uma solução que é representada por uma esperança condicional de um processo markoviano do preço do derivativo descontado pela taxa livre de risco. Por este resultado, temos que a esperança deve ser tomada com relação a processos que crescem à taxa livre de risco e por este motivo dizemos que a esperança é tomada em um mundo neutro ao risco(ou medida neutra ao risco). Apresento ainda como realizar uma mudança de medida pertinente que conecta o mundo real ao mundo neutro ao risco e que o elemento chave para essa mudança de medida é o preço de mercado dos fatores de risco. No caso de mercado completo o preço de mercado do fator de risco é único e no caso de mercados incompletos existe uma variedade de preços aceitáveis para os fatores de risco pelo argumento de não arbitragem. Neste último caso, os preços de mercado são geralmente escolhidos de forma a calibrar o modelo com os dados de mercado.porEquação diferencial parcialFeynman-KacFator de riscoPreço do derivativoDerivatives pricePartial differential equationFactor riskEconomiaDerivativos (Finanças)PreçosRisco (Economia)Equações diferenciaisUma resenha sobre modelos de apreçamento de derivativosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf709819https://repositorio.fgv.br/bitstreams/4ae06900-9241-4e65-9a14-8d208b5cde24/download11a410ca7be737e1b89ed81a75cd3a0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/1a9bbbfe-af59-4d9d-b8c6-d4426fbb0b30/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDissertação.pdf.txtDissertação.pdf.txtExtracted Texttext/plain145611https://repositorio.fgv.br/bitstreams/2891d4c3-7f4d-4d26-b822-4c103a6d62cc/download862d3feb7c4730b4936894cd6ec15f28MD53PDF.txtPDF.txtExtracted texttext/plain106940https://repositorio.fgv.br/bitstreams/d5546d77-ee45-4d9a-b7bc-26871d60d38c/download5fda11e67fd9c78f5d38b4aa2289bd8fMD55THUMBNAILDissertação.pdf.jpgDissertação.pdf.jpgGenerated Thumbnailimage/jpeg1631https://repositorio.fgv.br/bitstreams/e4e37242-a03e-4a74-a8f0-1d06ac00a121/downloadb37a91dffc83f10cbad66702ffb745afMD54PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg2983https://repositorio.fgv.br/bitstreams/0a6a823f-8994-4c49-b70d-4a385d88e209/download42377073ca4119a9a7163cc4a8b04facMD5610438/102982024-07-08 19:00:41.745open.accessoai:repositorio.fgv.br:10438/10298https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T19:00:41Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Uma resenha sobre modelos de apreçamento de derivativos
title Uma resenha sobre modelos de apreçamento de derivativos
spellingShingle Uma resenha sobre modelos de apreçamento de derivativos
Guimarães, Pedro Henrique Engel
Equação diferencial parcial
Feynman-Kac
Fator de risco
Preço do derivativo
Derivatives price
Partial differential equation
Factor risk
Economia
Derivativos (Finanças)
Preços
Risco (Economia)
Equações diferenciais
title_short Uma resenha sobre modelos de apreçamento de derivativos
title_full Uma resenha sobre modelos de apreçamento de derivativos
title_fullStr Uma resenha sobre modelos de apreçamento de derivativos
title_full_unstemmed Uma resenha sobre modelos de apreçamento de derivativos
title_sort Uma resenha sobre modelos de apreçamento de derivativos
author Guimarães, Pedro Henrique Engel
author_facet Guimarães, Pedro Henrique Engel
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.member.none.fl_str_mv Nazareth, Marcelo de Oliveira e Costa
Vicente, José Valentim Machado
dc.contributor.author.fl_str_mv Guimarães, Pedro Henrique Engel
dc.contributor.advisor1.fl_str_mv Almeida, Caio Ibsen Rodrigues de
contributor_str_mv Almeida, Caio Ibsen Rodrigues de
dc.subject.por.fl_str_mv Equação diferencial parcial
Feynman-Kac
Fator de risco
Preço do derivativo
topic Equação diferencial parcial
Feynman-Kac
Fator de risco
Preço do derivativo
Derivatives price
Partial differential equation
Factor risk
Economia
Derivativos (Finanças)
Preços
Risco (Economia)
Equações diferenciais
dc.subject.eng.fl_str_mv Derivatives price
Partial differential equation
Factor risk
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Derivativos (Finanças)
Preços
Risco (Economia)
Equações diferenciais
description I present here an approach that unify a variety of derivative pricing models that consists of attaining a Partial Differential Equation(PDE) by intuitive arguments and give its solution by Feynman-Kac method as a conditinal expectation of a markovian process. The expectation is taken in a risk neutral world(or risk neutral measure) where all the assets grow at the risk free rate. I also present how to make this specific change of measure, connecting the real world to the risk neutral world, and show that the relevant element for the measure change is the market price of factor risk. When the market is complete the market price of risk is unique and when the market is incomplete there is a variety of possible prices to the market price of factor risks that satisfy no arbitrage arguments. In the latter case the parameters are usually chosen to calibrate the model to market data.
publishDate 2012
dc.date.accessioned.fl_str_mv 2012-12-20T16:42:10Z
dc.date.available.fl_str_mv 2012-12-20T16:42:10Z
dc.date.issued.fl_str_mv 2012-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/10298
identifier_str_mv GUIMARÃES, Pedro Henrique Engel. Uma resenha sobre modelos de apreçamento de derivativos. Dissertação (Mestrado em Economia) - FGV - Fundação Getúlio Vargas, Rio de Janeiro, 2012.
url https://hdl.handle.net/10438/10298
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/4ae06900-9241-4e65-9a14-8d208b5cde24/download
https://repositorio.fgv.br/bitstreams/1a9bbbfe-af59-4d9d-b8c6-d4426fbb0b30/download
https://repositorio.fgv.br/bitstreams/2891d4c3-7f4d-4d26-b822-4c103a6d62cc/download
https://repositorio.fgv.br/bitstreams/d5546d77-ee45-4d9a-b7bc-26871d60d38c/download
https://repositorio.fgv.br/bitstreams/e4e37242-a03e-4a74-a8f0-1d06ac00a121/download
https://repositorio.fgv.br/bitstreams/0a6a823f-8994-4c49-b70d-4a385d88e209/download
bitstream.checksum.fl_str_mv 11a410ca7be737e1b89ed81a75cd3a0d
dfb340242cced38a6cca06c627998fa1
862d3feb7c4730b4936894cd6ec15f28
5fda11e67fd9c78f5d38b4aa2289bd8f
b37a91dffc83f10cbad66702ffb745af
42377073ca4119a9a7163cc4a8b04fac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797785257902080