Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas

Detalhes bibliográficos
Autor(a) principal: Aun, Eduardo Augusto
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/10395
Resumo: Este estudo compara previsões de volatilidade de sete ações negociadas na Bovespa usando 02 diferentes modelos de volatilidade realizada e 03 de volatilidade condicional. A intenção é encontrar evidências empíricas quanto à diferença de resultados que são alcançados quando se usa modelos de volatilidade realizada e de volatilidade condicional para prever a volatilidade de ações no Brasil. O período analisado vai de 01 de Novembro de 2007 a 30 de Março de 2011. A amostra inclui dados intradiários de 5 minutos. Os estimadores de volatilidade realizada que serão considerados neste estudo são o Bi-Power Variation (BPVar), desenvolvido por Barndorff-Nielsen e Shephard (2004b), e o Realized Outlyingness Weighted Variation (ROWVar), proposto por Boudt, Croux e Laurent (2008a). Ambos são estimadores não paramétricos, e são robustos a jumps. As previsões de volatilidade realizada foram feitas através de modelos autoregressivos estimados para cada ação sobre as séries de volatilidade estimadas. Os modelos de variância condicional considerados aqui serão o GARCH(1,1), o GJR (1,1), que tem assimetrias em sua construção, e o FIGARCH-CHUNG (1,d,1), que tem memória longa. A amostra foi divida em duas; uma para o período de estimação de 01 de Novembro de 2007 a 30 de Dezembro de 2010 (779 dias de negociação) e uma para o período de validação de 03 de Janeiro de 2011 a 31 de Março de 2011 (61 dias de negociação). As previsões fora da amostra foram feitas para 1 dia a frente, e os modelos foram reestimados a cada passo, incluindo uma variável a mais na amostra depois de cada previsão. As previsões serão comparadas através do teste Diebold-Mariano e através de regressões da variância ex-post contra uma constante e a previsão. Além disto, o estudo também apresentará algumas estatísticas descritivas sobre as séries de volatilidade estimadas e sobre os erros de previsão.
id FGV_acd60404fcfc363fb59b01fc62dbe559
oai_identifier_str oai:repositorio.fgv.br:10438/10395
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Aun, Eduardo AugustoEscolas::EESPMarçal, Emerson FernandesDomingues, Gabriela BertolPereira, Pedro L. Valls2013-01-16T19:55:33Z2013-01-16T19:55:33Z2012-12-18AUN, Eduardo Augusto. Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2012.http://hdl.handle.net/10438/10395Este estudo compara previsões de volatilidade de sete ações negociadas na Bovespa usando 02 diferentes modelos de volatilidade realizada e 03 de volatilidade condicional. A intenção é encontrar evidências empíricas quanto à diferença de resultados que são alcançados quando se usa modelos de volatilidade realizada e de volatilidade condicional para prever a volatilidade de ações no Brasil. O período analisado vai de 01 de Novembro de 2007 a 30 de Março de 2011. A amostra inclui dados intradiários de 5 minutos. Os estimadores de volatilidade realizada que serão considerados neste estudo são o Bi-Power Variation (BPVar), desenvolvido por Barndorff-Nielsen e Shephard (2004b), e o Realized Outlyingness Weighted Variation (ROWVar), proposto por Boudt, Croux e Laurent (2008a). Ambos são estimadores não paramétricos, e são robustos a jumps. As previsões de volatilidade realizada foram feitas através de modelos autoregressivos estimados para cada ação sobre as séries de volatilidade estimadas. Os modelos de variância condicional considerados aqui serão o GARCH(1,1), o GJR (1,1), que tem assimetrias em sua construção, e o FIGARCH-CHUNG (1,d,1), que tem memória longa. A amostra foi divida em duas; uma para o período de estimação de 01 de Novembro de 2007 a 30 de Dezembro de 2010 (779 dias de negociação) e uma para o período de validação de 03 de Janeiro de 2011 a 31 de Março de 2011 (61 dias de negociação). As previsões fora da amostra foram feitas para 1 dia a frente, e os modelos foram reestimados a cada passo, incluindo uma variável a mais na amostra depois de cada previsão. As previsões serão comparadas através do teste Diebold-Mariano e através de regressões da variância ex-post contra uma constante e a previsão. Além disto, o estudo também apresentará algumas estatísticas descritivas sobre as séries de volatilidade estimadas e sobre os erros de previsão.This study compares volatility forecasts of seven publicly traded companies using 2 different models of realized volatility and 3 models of conditional volatility. The intention is to find empirical evidence as to the difference in results that are achieved when using models of realized volatility and conditional volatility to predict the volatility of shares in Brazil. The sample period runs from 1 November 2007 to 30 March 2011. The sample includes 5 minutes intraday data. The realized volatility estimators that are considered in this study are the Bi-Power Variation (BPVar) developed by Barndorff-Nielsen and Shephard (2004b), and Weighted Realized Outlyingness Variation (ROWVar) proposed by Boudt, Croux and Laurent (2008a) . Both estimators are non-parametric, and are robust to jumps. The realized volatility forecasts were made by autoregressive models estimated for each share on the estimated volatility series. The conditional variance models considered here are the GARCH (1,1), the GJR (1,1), having asymmetries in its construction, and FIGARCH-CHUNG (1, d 1), having long memory. The sample was divided into two, one for the estimation period from 01 November 2007 to 30 December 2010 (779 trading days) and one for the validation period of 03 January 2011 to 31 March 2011 (61 trading days). The out of sample forecasts were made to 1 day ahead, and the models were reestimated at each step, including one more variable in the sample after each prediction. The predictions will be compared using the Diebold-Mariano test and through regressions of the variance ex-post against a constant and the prediction. Moreover, the study also shows some descriptive statistics on the estimated volatility series and on the forecasting errors.porRealized volatilityVolatility forecastStock volatilityVolatilidade realizadaPrevisão de volatililidadeVolatilidade de açõesEconomiaAções (Finanças) - BrasilBolsa de Valores de São PauloFinanças - Modelos matemáticosPrevisão estatísticaPrevendo a volatilidade realizada de ações brasileiras: evidências empíricasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/5a39e47e-f72b-4307-b36d-9f148ceb10b9/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdf.txtDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdf.txtExtracted texttext/plain81428https://repositorio.fgv.br/bitstreams/9780ecb6-7747-497c-b34d-826f0b566c33/download6be892f31c1dfef9d9a8462cc3edd087MD59THUMBNAILDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdf.jpgDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdf.jpgGenerated Thumbnailimage/jpeg2849https://repositorio.fgv.br/bitstreams/35d097f5-f731-4db2-8c1f-50f5c49532cf/downloadbd2d18f04110d8c18ce138879c3b3a7aMD510ORIGINALDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdfDISSERTAÇÃO EDUARDO A AUN 2012 MPFE FGV.pdfapplication/pdf1267960https://repositorio.fgv.br/bitstreams/7ef7ff0f-003f-4eb8-b472-6f80421b44e0/download573fb7efd94d27816ba533714dd555daMD5510438/103952023-11-08 06:48:48.064open.accessoai:repositorio.fgv.br:10438/10395https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T06:48:48Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
title Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
spellingShingle Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
Aun, Eduardo Augusto
Realized volatility
Volatility forecast
Stock volatility
Volatilidade realizada
Previsão de volatililidade
Volatilidade de ações
Economia
Ações (Finanças) - Brasil
Bolsa de Valores de São Paulo
Finanças - Modelos matemáticos
Previsão estatística
title_short Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
title_full Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
title_fullStr Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
title_full_unstemmed Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
title_sort Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas
author Aun, Eduardo Augusto
author_facet Aun, Eduardo Augusto
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Marçal, Emerson Fernandes
Domingues, Gabriela Bertol
dc.contributor.author.fl_str_mv Aun, Eduardo Augusto
dc.contributor.advisor1.fl_str_mv Pereira, Pedro L. Valls
contributor_str_mv Pereira, Pedro L. Valls
dc.subject.eng.fl_str_mv Realized volatility
Volatility forecast
Stock volatility
topic Realized volatility
Volatility forecast
Stock volatility
Volatilidade realizada
Previsão de volatililidade
Volatilidade de ações
Economia
Ações (Finanças) - Brasil
Bolsa de Valores de São Paulo
Finanças - Modelos matemáticos
Previsão estatística
dc.subject.por.fl_str_mv Volatilidade realizada
Previsão de volatililidade
Volatilidade de ações
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Ações (Finanças) - Brasil
Bolsa de Valores de São Paulo
Finanças - Modelos matemáticos
Previsão estatística
description Este estudo compara previsões de volatilidade de sete ações negociadas na Bovespa usando 02 diferentes modelos de volatilidade realizada e 03 de volatilidade condicional. A intenção é encontrar evidências empíricas quanto à diferença de resultados que são alcançados quando se usa modelos de volatilidade realizada e de volatilidade condicional para prever a volatilidade de ações no Brasil. O período analisado vai de 01 de Novembro de 2007 a 30 de Março de 2011. A amostra inclui dados intradiários de 5 minutos. Os estimadores de volatilidade realizada que serão considerados neste estudo são o Bi-Power Variation (BPVar), desenvolvido por Barndorff-Nielsen e Shephard (2004b), e o Realized Outlyingness Weighted Variation (ROWVar), proposto por Boudt, Croux e Laurent (2008a). Ambos são estimadores não paramétricos, e são robustos a jumps. As previsões de volatilidade realizada foram feitas através de modelos autoregressivos estimados para cada ação sobre as séries de volatilidade estimadas. Os modelos de variância condicional considerados aqui serão o GARCH(1,1), o GJR (1,1), que tem assimetrias em sua construção, e o FIGARCH-CHUNG (1,d,1), que tem memória longa. A amostra foi divida em duas; uma para o período de estimação de 01 de Novembro de 2007 a 30 de Dezembro de 2010 (779 dias de negociação) e uma para o período de validação de 03 de Janeiro de 2011 a 31 de Março de 2011 (61 dias de negociação). As previsões fora da amostra foram feitas para 1 dia a frente, e os modelos foram reestimados a cada passo, incluindo uma variável a mais na amostra depois de cada previsão. As previsões serão comparadas através do teste Diebold-Mariano e através de regressões da variância ex-post contra uma constante e a previsão. Além disto, o estudo também apresentará algumas estatísticas descritivas sobre as séries de volatilidade estimadas e sobre os erros de previsão.
publishDate 2012
dc.date.issued.fl_str_mv 2012-12-18
dc.date.accessioned.fl_str_mv 2013-01-16T19:55:33Z
dc.date.available.fl_str_mv 2013-01-16T19:55:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AUN, Eduardo Augusto. Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2012.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/10395
identifier_str_mv AUN, Eduardo Augusto. Prevendo a volatilidade realizada de ações brasileiras: evidências empíricas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2012.
url http://hdl.handle.net/10438/10395
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/5a39e47e-f72b-4307-b36d-9f148ceb10b9/download
https://repositorio.fgv.br/bitstreams/9780ecb6-7747-497c-b34d-826f0b566c33/download
https://repositorio.fgv.br/bitstreams/35d097f5-f731-4db2-8c1f-50f5c49532cf/download
https://repositorio.fgv.br/bitstreams/7ef7ff0f-003f-4eb8-b472-6f80421b44e0/download
bitstream.checksum.fl_str_mv dfb340242cced38a6cca06c627998fa1
6be892f31c1dfef9d9a8462cc3edd087
bd2d18f04110d8c18ce138879c3b3a7a
573fb7efd94d27816ba533714dd555da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797755032698880