Constant Depth Decision Rules for Multistage Stochastic Convex Programs

Detalhes bibliográficos
Autor(a) principal: Guigues, Vincent Gérard Yannick
Data de Publicação: 2020
Outros Autores: Juditsky, Anatoli, Nemirovski, Arkadi Semenovich
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/29231
Resumo: In this paper, we introduce a new class of decision rules called Constant Depth Decision Rules (CDDRs) for Multistage Stochastic Convex Programs (MSCP) depending on a parame- ter Mi called the depth of the decision rules. More precisely, the decision for stage t is expressed as the sum of t functions of Mi consecutive values of the underlying stochastic process. We con- sider two classes of stochastic processes: processes with discrete known distributions and processes with unknown distributions whose support is a known polyhedral set. For these two classes, we show how to reformulate the corresponding approximate problem as a linear (resp. nonlinear and of the same structure) program when the original MSCP is linear (resp. nonlinear) where the number of variables and constraints is polynomial in some variable expressed in terms of Mi and the problem parameters. We also describe the functions of a library available on Github at https://github.com/vguigues/Constant_Depth_Decision_Rules_Library, implementing CD- DRs for multistage stochastic linear programs. Finally, we present the results of encouraging numerical results on a hydro-thermal planning problem with interstage dependent in ows where CDDRs are computed much quicker than Stochastic Dual Dynamic Programming policy and pro- vide very similar average costs as long as the number of stages and number of realizations of in ows per stage are not too large and Mi is not too small.
id FGV_b1b6d9d468b5c3ee6da39de7c0006707
oai_identifier_str oai:repositorio.fgv.br:10438/29231
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Guigues, Vincent Gérard YannickJuditsky, AnatoliNemirovski, Arkadi SemenovichEscolas::EMApDemais unidades::RPCA2020-06-05T11:43:16Z2020-06-05T11:43:16Z2020-05https://hdl.handle.net/10438/29231In this paper, we introduce a new class of decision rules called Constant Depth Decision Rules (CDDRs) for Multistage Stochastic Convex Programs (MSCP) depending on a parame- ter Mi called the depth of the decision rules. More precisely, the decision for stage t is expressed as the sum of t functions of Mi consecutive values of the underlying stochastic process. We con- sider two classes of stochastic processes: processes with discrete known distributions and processes with unknown distributions whose support is a known polyhedral set. For these two classes, we show how to reformulate the corresponding approximate problem as a linear (resp. nonlinear and of the same structure) program when the original MSCP is linear (resp. nonlinear) where the number of variables and constraints is polynomial in some variable expressed in terms of Mi and the problem parameters. We also describe the functions of a library available on Github at https://github.com/vguigues/Constant_Depth_Decision_Rules_Library, implementing CD- DRs for multistage stochastic linear programs. Finally, we present the results of encouraging numerical results on a hydro-thermal planning problem with interstage dependent in ows where CDDRs are computed much quicker than Stochastic Dual Dynamic Programming policy and pro- vide very similar average costs as long as the number of stages and number of realizations of in ows per stage are not too large and Mi is not too small.engRobust OptimizationDecision rulesStochastic ProgrammingSDDPMatemáticaProcesso estocásticoOtimização matemáticaConstant Depth Decision Rules for Multistage Stochastic Convex Programsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTeste de Hipóteses e Detecção de Rupturas nos Controles de um Sistema Linear Dinâmico EstocásticoProjetos de Pesquisa AplicadaLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/9e461025-b12f-49fb-b4a5-3d2d8603927b/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALDP_2020_0510_submitted.pdfDP_2020_0510_submitted.pdfapplication/pdf414531https://repositorio.fgv.br/bitstreams/b2a89009-f793-444c-8f3b-ec86b7667640/downloadfad3db273cbc38548783845625f510e9MD53TEXTDP_2020_0510_submitted.pdf.txtDP_2020_0510_submitted.pdf.txtExtracted texttext/plain49009https://repositorio.fgv.br/bitstreams/a6380002-5212-4906-9f2f-7acffc75a964/download8e7d85af212bc1caa6e640e0f42238bfMD56THUMBNAILDP_2020_0510_submitted.pdf.jpgDP_2020_0510_submitted.pdf.jpgGenerated Thumbnailimage/jpeg4351https://repositorio.fgv.br/bitstreams/ba8f1ed1-bb06-4416-96b1-c0a8a030590b/download9e5d8080204983e1b5aa2600dbe3ba1bMD5710438/292312023-11-25 10:39:31.483open.accessoai:repositorio.fgv.br:10438/29231https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T10:39:31Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Constant Depth Decision Rules for Multistage Stochastic Convex Programs
title Constant Depth Decision Rules for Multistage Stochastic Convex Programs
spellingShingle Constant Depth Decision Rules for Multistage Stochastic Convex Programs
Guigues, Vincent Gérard Yannick
Robust Optimization
Decision rules
Stochastic Programming
SDDP
Matemática
Processo estocástico
Otimização matemática
title_short Constant Depth Decision Rules for Multistage Stochastic Convex Programs
title_full Constant Depth Decision Rules for Multistage Stochastic Convex Programs
title_fullStr Constant Depth Decision Rules for Multistage Stochastic Convex Programs
title_full_unstemmed Constant Depth Decision Rules for Multistage Stochastic Convex Programs
title_sort Constant Depth Decision Rules for Multistage Stochastic Convex Programs
author Guigues, Vincent Gérard Yannick
author_facet Guigues, Vincent Gérard Yannick
Juditsky, Anatoli
Nemirovski, Arkadi Semenovich
author_role author
author2 Juditsky, Anatoli
Nemirovski, Arkadi Semenovich
author2_role author
author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EMAp
Demais unidades::RPCA
dc.contributor.author.fl_str_mv Guigues, Vincent Gérard Yannick
Juditsky, Anatoli
Nemirovski, Arkadi Semenovich
dc.subject.eng.fl_str_mv Robust Optimization
Decision rules
Stochastic Programming
SDDP
topic Robust Optimization
Decision rules
Stochastic Programming
SDDP
Matemática
Processo estocástico
Otimização matemática
dc.subject.area.por.fl_str_mv Matemática
dc.subject.bibliodata.por.fl_str_mv Processo estocástico
Otimização matemática
description In this paper, we introduce a new class of decision rules called Constant Depth Decision Rules (CDDRs) for Multistage Stochastic Convex Programs (MSCP) depending on a parame- ter Mi called the depth of the decision rules. More precisely, the decision for stage t is expressed as the sum of t functions of Mi consecutive values of the underlying stochastic process. We con- sider two classes of stochastic processes: processes with discrete known distributions and processes with unknown distributions whose support is a known polyhedral set. For these two classes, we show how to reformulate the corresponding approximate problem as a linear (resp. nonlinear and of the same structure) program when the original MSCP is linear (resp. nonlinear) where the number of variables and constraints is polynomial in some variable expressed in terms of Mi and the problem parameters. We also describe the functions of a library available on Github at https://github.com/vguigues/Constant_Depth_Decision_Rules_Library, implementing CD- DRs for multistage stochastic linear programs. Finally, we present the results of encouraging numerical results on a hydro-thermal planning problem with interstage dependent in ows where CDDRs are computed much quicker than Stochastic Dual Dynamic Programming policy and pro- vide very similar average costs as long as the number of stages and number of realizations of in ows per stage are not too large and Mi is not too small.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-06-05T11:43:16Z
dc.date.available.fl_str_mv 2020-06-05T11:43:16Z
dc.date.issued.fl_str_mv 2020-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/29231
url https://hdl.handle.net/10438/29231
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/9e461025-b12f-49fb-b4a5-3d2d8603927b/download
https://repositorio.fgv.br/bitstreams/b2a89009-f793-444c-8f3b-ec86b7667640/download
https://repositorio.fgv.br/bitstreams/a6380002-5212-4906-9f2f-7acffc75a964/download
https://repositorio.fgv.br/bitstreams/ba8f1ed1-bb06-4416-96b1-c0a8a030590b/download
bitstream.checksum.fl_str_mv dfb340242cced38a6cca06c627998fa1
fad3db273cbc38548783845625f510e9
8e7d85af212bc1caa6e640e0f42238bf
9e5d8080204983e1b5aa2600dbe3ba1b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797760800915456