A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age

Detalhes bibliográficos
Autor(a) principal: Reichenheim,Michael E.
Data de Publicação: 2000
Outros Autores: Best,Nicola G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2000000200022
Resumo: Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.
id FIOCRUZ-5_087cfa44fb507997750d5824cff9c643
oai_identifier_str oai:scielo:S0102-311X2000000200022
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-ageAnthropometryNutritional SurveillanceStatistical ModelBayes TheoremMarkov chain Monte Carlo MethodVictora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2000-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2000000200022Cadernos de Saúde Pública v.16 n.2 2000reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/S0102-311X2000000200022info:eu-repo/semantics/openAccessReichenheim,Michael E.Best,Nicola G.eng2001-08-15T00:00:00Zoai:scielo:S0102-311X2000000200022Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2001-08-15T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.none.fl_str_mv A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
spellingShingle A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
Reichenheim,Michael E.
Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
title_short A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_full A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_fullStr A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_full_unstemmed A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_sort A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
author Reichenheim,Michael E.
author_facet Reichenheim,Michael E.
Best,Nicola G.
author_role author
author2 Best,Nicola G.
author2_role author
dc.contributor.author.fl_str_mv Reichenheim,Michael E.
Best,Nicola G.
dc.subject.por.fl_str_mv Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
topic Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
description Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.
publishDate 2000
dc.date.none.fl_str_mv 2000-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2000000200022
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2000000200022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0102-311X2000000200022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
dc.source.none.fl_str_mv Cadernos de Saúde Pública v.16 n.2 2000
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1754115719633567744