A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age

Detalhes bibliográficos
Autor(a) principal: Reichenheim, Michael E.
Data de Publicação: 2000
Outros Autores: Best, Nicola G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294
Resumo: Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.
id FIOCRUZ-5_849ab3fa6ee940b12251dc2b6397e066
oai_identifier_str oai:ojs.teste-cadernos.ensp.fiocruz.br:article/1294
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-ageAnthropometryNutritional SurveillanceStatistical ModelBayes TheoremMarkov chain Monte Carlo MethodVictora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.Victora et al. (1998) propuseram o uso de estimativas de prevalência de baixo peso para idade para a estimação de déficit de altura para idade em crianças brasileiras, em virtude da necessidade de simplificar métodos usados em programas de saúde comunitária. Este artigo tenta aprofundar o referido estudo ao propor uma abordagem Bayesiana com base no método de Simulação Estocástica via Cadeia de Markov (SEvCM), para lidar com questões de imprecisão ligadas à modelagem de estimação do déficit de estatura. Para evitar valores inválidos de prevalência estimados pelo modelo linear sugerido originalmente, propõem-se duas alternativas: um truncamento dos valores que extrapolem os limites plausíveis de prevalência ou uma transformação logito das prevalências. A abordagem Bayesiana é ilustrada com um exemplo de um estudo comunitário. Imprecisões oriundas da complexidade do desenho desse estudo também são contornadas com a abordagem Bayesiana, ao se introduzir uma estrutura hierárquica ou multinível. Já que o déficit de crescimento foi efetivamente observado no exemplo, o artigo também serve como instância de validação para o procedimento proposto por Victora et al.Reports in Public HealthCadernos de Saúde Pública2000-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294Reports in Public Health; Vol. 16 No. 2 (2000): April/JuneCadernos de Saúde Pública; v. 16 n. 2 (2000): Abril/Junho1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2576https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2577Reichenheim, Michael E.Best, Nicola G.info:eu-repo/semantics/openAccess2024-03-06T15:26:20Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/1294Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:01:33.515408Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true
dc.title.none.fl_str_mv A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
spellingShingle A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
Reichenheim, Michael E.
Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
title_short A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_full A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_fullStr A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_full_unstemmed A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
title_sort A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
author Reichenheim, Michael E.
author_facet Reichenheim, Michael E.
Best, Nicola G.
author_role author
author2 Best, Nicola G.
author2_role author
dc.contributor.author.fl_str_mv Reichenheim, Michael E.
Best, Nicola G.
dc.subject.por.fl_str_mv Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
topic Anthropometry
Nutritional Surveillance
Statistical Model
Bayes Theorem
Markov chain Monte Carlo Method
description Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.
publishDate 2000
dc.date.none.fl_str_mv 2000-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294
url https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2576
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2577
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
publisher.none.fl_str_mv Reports in Public Health
Cadernos de Saúde Pública
dc.source.none.fl_str_mv Reports in Public Health; Vol. 16 No. 2 (2000): April/June
Cadernos de Saúde Pública; v. 16 n. 2 (2000): Abril/Junho
1678-4464
0102-311X
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1798943346980290560