A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294 |
Resumo: | Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al. |
id |
FIOCRUZ-5_849ab3fa6ee940b12251dc2b6397e066 |
---|---|
oai_identifier_str |
oai:ojs.teste-cadernos.ensp.fiocruz.br:article/1294 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-ageAnthropometryNutritional SurveillanceStatistical ModelBayes TheoremMarkov chain Monte Carlo MethodVictora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al.Victora et al. (1998) propuseram o uso de estimativas de prevalência de baixo peso para idade para a estimação de déficit de altura para idade em crianças brasileiras, em virtude da necessidade de simplificar métodos usados em programas de saúde comunitária. Este artigo tenta aprofundar o referido estudo ao propor uma abordagem Bayesiana com base no método de Simulação Estocástica via Cadeia de Markov (SEvCM), para lidar com questões de imprecisão ligadas à modelagem de estimação do déficit de estatura. Para evitar valores inválidos de prevalência estimados pelo modelo linear sugerido originalmente, propõem-se duas alternativas: um truncamento dos valores que extrapolem os limites plausíveis de prevalência ou uma transformação logito das prevalências. A abordagem Bayesiana é ilustrada com um exemplo de um estudo comunitário. Imprecisões oriundas da complexidade do desenho desse estudo também são contornadas com a abordagem Bayesiana, ao se introduzir uma estrutura hierárquica ou multinível. Já que o déficit de crescimento foi efetivamente observado no exemplo, o artigo também serve como instância de validação para o procedimento proposto por Victora et al.Reports in Public HealthCadernos de Saúde Pública2000-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294Reports in Public Health; Vol. 16 No. 2 (2000): April/JuneCadernos de Saúde Pública; v. 16 n. 2 (2000): Abril/Junho1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2576https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2577Reichenheim, Michael E.Best, Nicola G.info:eu-repo/semantics/openAccess2024-03-06T15:26:20Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/1294Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:01:33.515408Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true |
dc.title.none.fl_str_mv |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
title |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
spellingShingle |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age Reichenheim, Michael E. Anthropometry Nutritional Surveillance Statistical Model Bayes Theorem Markov chain Monte Carlo Method |
title_short |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
title_full |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
title_fullStr |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
title_full_unstemmed |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
title_sort |
A Bayesian approach to estimate the prevalence of low height-for-age from the prevalence of low weight-for-age |
author |
Reichenheim, Michael E. |
author_facet |
Reichenheim, Michael E. Best, Nicola G. |
author_role |
author |
author2 |
Best, Nicola G. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Reichenheim, Michael E. Best, Nicola G. |
dc.subject.por.fl_str_mv |
Anthropometry Nutritional Surveillance Statistical Model Bayes Theorem Markov chain Monte Carlo Method |
topic |
Anthropometry Nutritional Surveillance Statistical Model Bayes Theorem Markov chain Monte Carlo Method |
description |
Victora et al. (1998) proposed the use of low weight-for-age prevalence to estimate the prevalence of height-for-age deficit in Brazilian children. This procedure was justified by the need to simplify methods used in the context of community health programs. From the same perspective, the present article broadens this proposal by using a Bayesian approach (based on Markov Chain Monte Carlo (MCMC) methods) to deal with the imprecision resulting from Victora et al.'s model. In order to avoid invalid estimated prevalence values which can occur with the original linear model, truncation or a logit transformation of the prevalences are suggested. The Bayesian approach is illustrated using a community study as an example. Imprecision arising from methodological complexities in the community study design, such as multi-stage sampling and clustering, is easily handled within the Bayesian framework by introducing a hierarchical or multilevel model structure. Since growth deficit was also evaluated in the community study, the article may also serve to validate the procedure proposed by Victora et al. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294 |
url |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2576 https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/1294/2577 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
dc.source.none.fl_str_mv |
Reports in Public Health; Vol. 16 No. 2 (2000): April/June Cadernos de Saúde Pública; v. 16 n. 2 (2000): Abril/Junho 1678-4464 0102-311X reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1798943346980290560 |