Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2021000605015 |
Resumo: | Resumo: A aplicação da análise espacial destinada ao estudo de dados epidemiológicos humanos se tornou notória nas últimas duas décadas. Nesse sentido, este artigo aborda a estatística scan para a detecção de clusters espaço-temporais de casos da COVID-19 em Santa Catarina, Brasil. O objetivo é aplicar a estatística scan para a identificação de agrupamentos ativos, determinando sua localização, dimensão e ordem (prioridade). A organização da base descritiva abrangeu os casos de COVID-19 entre 1º de março e 31 de agosto de 2020, disponíveis no Portal de Dados Abertos do Estado de Santa Catarina. A base vetorial dos limites municipais e mesorregiões catarinenses, e as populações estimadas para 2020 foram obtidas no site do Instituto Brasileiro de Geografia e Estatística (IBGE). A covariável tendência de mobilidade dos locais de trabalho foi obtida no documento COVID-19: Relatório de Mobilidade da Comunidade do Google. Para a execução da estatística, considerou-se o modelo discreto de Poisson, apoiado na abordagem prospectiva. No resultado do trabalho, evidenciou-se a capacidade do procedimento para delimitação dos clusters, o qual identificou 17 clusters ativos com a variável resposta e 18 ativos após a inclusão da covariável, distribuídos em todo estado, predominantes no litoral e no Oeste Catarinense. O cluster primário localizou-se no Sul Catarinense. A covariável tendência de mobilidade dos locais de trabalho influenciou moderadamente em 38,89% dos aglomerados. O método foi eficiente para a compreensão da distribuição espacial da epidemia. Isso caracteriza a estatística scan como uma ferramenta de apoio a execução de ações a serem tomadas por gestores, priorizando áreas mais afetadas pela doença. |
id |
FIOCRUZ-5_3ac14a214200c1327a46749934e15d7c |
---|---|
oai_identifier_str |
oai:scielo:S0102-311X2021000605015 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalhoCoronavirusGeografia MédicaAnálise Espaço-TemporalResumo: A aplicação da análise espacial destinada ao estudo de dados epidemiológicos humanos se tornou notória nas últimas duas décadas. Nesse sentido, este artigo aborda a estatística scan para a detecção de clusters espaço-temporais de casos da COVID-19 em Santa Catarina, Brasil. O objetivo é aplicar a estatística scan para a identificação de agrupamentos ativos, determinando sua localização, dimensão e ordem (prioridade). A organização da base descritiva abrangeu os casos de COVID-19 entre 1º de março e 31 de agosto de 2020, disponíveis no Portal de Dados Abertos do Estado de Santa Catarina. A base vetorial dos limites municipais e mesorregiões catarinenses, e as populações estimadas para 2020 foram obtidas no site do Instituto Brasileiro de Geografia e Estatística (IBGE). A covariável tendência de mobilidade dos locais de trabalho foi obtida no documento COVID-19: Relatório de Mobilidade da Comunidade do Google. Para a execução da estatística, considerou-se o modelo discreto de Poisson, apoiado na abordagem prospectiva. No resultado do trabalho, evidenciou-se a capacidade do procedimento para delimitação dos clusters, o qual identificou 17 clusters ativos com a variável resposta e 18 ativos após a inclusão da covariável, distribuídos em todo estado, predominantes no litoral e no Oeste Catarinense. O cluster primário localizou-se no Sul Catarinense. A covariável tendência de mobilidade dos locais de trabalho influenciou moderadamente em 38,89% dos aglomerados. O método foi eficiente para a compreensão da distribuição espacial da epidemia. Isso caracteriza a estatística scan como uma ferramenta de apoio a execução de ações a serem tomadas por gestores, priorizando áreas mais afetadas pela doença.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2021000605015Cadernos de Saúde Pública v.37 n.6 2021reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/0102-311x00301620info:eu-repo/semantics/openAccessMerêncio,IvanMonteiro,Gecielli MartinsVieira,Carlos Antônio Oliveirapor2021-06-23T00:00:00Zoai:scielo:S0102-311X2021000605015Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2021-06-23T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.none.fl_str_mv |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
title |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
spellingShingle |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho Merêncio,Ivan Coronavirus Geografia Médica Análise Espaço-Temporal |
title_short |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
title_full |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
title_fullStr |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
title_full_unstemmed |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
title_sort |
Aglomerados ativos de COVID-19 em Santa Catarina, Brasil, e tendência de mobilidade dos locais de trabalho |
author |
Merêncio,Ivan |
author_facet |
Merêncio,Ivan Monteiro,Gecielli Martins Vieira,Carlos Antônio Oliveira |
author_role |
author |
author2 |
Monteiro,Gecielli Martins Vieira,Carlos Antônio Oliveira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Merêncio,Ivan Monteiro,Gecielli Martins Vieira,Carlos Antônio Oliveira |
dc.subject.por.fl_str_mv |
Coronavirus Geografia Médica Análise Espaço-Temporal |
topic |
Coronavirus Geografia Médica Análise Espaço-Temporal |
description |
Resumo: A aplicação da análise espacial destinada ao estudo de dados epidemiológicos humanos se tornou notória nas últimas duas décadas. Nesse sentido, este artigo aborda a estatística scan para a detecção de clusters espaço-temporais de casos da COVID-19 em Santa Catarina, Brasil. O objetivo é aplicar a estatística scan para a identificação de agrupamentos ativos, determinando sua localização, dimensão e ordem (prioridade). A organização da base descritiva abrangeu os casos de COVID-19 entre 1º de março e 31 de agosto de 2020, disponíveis no Portal de Dados Abertos do Estado de Santa Catarina. A base vetorial dos limites municipais e mesorregiões catarinenses, e as populações estimadas para 2020 foram obtidas no site do Instituto Brasileiro de Geografia e Estatística (IBGE). A covariável tendência de mobilidade dos locais de trabalho foi obtida no documento COVID-19: Relatório de Mobilidade da Comunidade do Google. Para a execução da estatística, considerou-se o modelo discreto de Poisson, apoiado na abordagem prospectiva. No resultado do trabalho, evidenciou-se a capacidade do procedimento para delimitação dos clusters, o qual identificou 17 clusters ativos com a variável resposta e 18 ativos após a inclusão da covariável, distribuídos em todo estado, predominantes no litoral e no Oeste Catarinense. O cluster primário localizou-se no Sul Catarinense. A covariável tendência de mobilidade dos locais de trabalho influenciou moderadamente em 38,89% dos aglomerados. O método foi eficiente para a compreensão da distribuição espacial da epidemia. Isso caracteriza a estatística scan como uma ferramenta de apoio a execução de ações a serem tomadas por gestores, priorizando áreas mais afetadas pela doença. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2021000605015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2021000605015 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/0102-311x00301620 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
dc.source.none.fl_str_mv |
Cadernos de Saúde Pública v.37 n.6 2021 reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1754115742167465984 |