Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives

Detalhes bibliográficos
Autor(a) principal: Camey,Suzi Alves
Data de Publicação: 2014
Outros Autores: Torman,Vanessa Bielefeldt Leotti, Hirakata,Vania Naomi, Cortes,Renan Xavier, Vigo,Alvaro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2014000100021
Resumo: Recent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions.
id FIOCRUZ-5_64b35c1a3e439f2677f2e52711e17bc3
oai_identifier_str oai:scielo:S0102-311X2014000100021
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternativesOdds RatioPrevalence RatioLogistic ModelsRelative RiskRecent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2014-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2014000100021Cadernos de Saúde Pública v.30 n.1 2014reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/0102-311X00077313info:eu-repo/semantics/openAccessCamey,Suzi AlvesTorman,Vanessa Bielefeldt LeottiHirakata,Vania NaomiCortes,Renan XavierVigo,Alvaroeng2014-03-28T00:00:00Zoai:scielo:S0102-311X2014000100021Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2014-03-28T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.none.fl_str_mv Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
title Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
spellingShingle Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
Camey,Suzi Alves
Odds Ratio
Prevalence Ratio
Logistic Models
Relative Risk
title_short Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
title_full Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
title_fullStr Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
title_full_unstemmed Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
title_sort Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
author Camey,Suzi Alves
author_facet Camey,Suzi Alves
Torman,Vanessa Bielefeldt Leotti
Hirakata,Vania Naomi
Cortes,Renan Xavier
Vigo,Alvaro
author_role author
author2 Torman,Vanessa Bielefeldt Leotti
Hirakata,Vania Naomi
Cortes,Renan Xavier
Vigo,Alvaro
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Camey,Suzi Alves
Torman,Vanessa Bielefeldt Leotti
Hirakata,Vania Naomi
Cortes,Renan Xavier
Vigo,Alvaro
dc.subject.por.fl_str_mv Odds Ratio
Prevalence Ratio
Logistic Models
Relative Risk
topic Odds Ratio
Prevalence Ratio
Logistic Models
Relative Risk
description Recent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2014000100021
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2014000100021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0102-311X00077313
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
dc.source.none.fl_str_mv Cadernos de Saúde Pública v.30 n.1 2014
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1754115734237085696