Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672 |
Resumo: | Recent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions. |
id |
FIOCRUZ-5_a586b48678a79ec36d5315bbcd65a4db |
---|---|
oai_identifier_str |
oai:ojs.teste-cadernos.ensp.fiocruz.br:article/5672 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternativesOdds RatioPrevalence RatioLogistic ModelsRelative RiskRecent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions.Los trabajos recientes han enfatizado que ya no se justifica el uso del odds ratio (OR) como una aproximación del riesgo relativo (RR) o razón de prevalencias (RP). El OR no puede ser interpretado como RR o RP, pues varios estudios han demostrado que el OR no es una buena aproximación cuando el suceso es común (> 10%). Para sucesos multinomiales se utiliza comúnmente la regresión logística multinomial. En este contexto, no hay estudios que demuestren el impacto de la aproximación del OR en las estimaciones de RR o RP. Nuestro objetivo es presentar y discutir métodos alternativos a la regresión logística multinomial, en base a la regresión de Poisson y al modelo log-binomial. Los enfoques utilizados fueron comparados en un estudio de simulación con diferentes escenarios. Así como en el caso de suceso binario, los modelos propuestos dieron como resultado estimaciones para RR o RP más precisas y esmeradas que la regresión logística multinomial. Para sucesos multinomiales el OR tampoco debe ser utilizado como aproximación del RR o de la RP, pues se puede llegar a conclusiones incorrectas.Recentes trabalhos têm enfatizado que já não há justificativa para o uso da razão de chances (RC) como aproximação do risco relativo (RR) ou razão de prevalência (RP). Deve-se evitar a interpretação equivocada da RC como RR ou RP, pois vários estudos demonstraram que a RC não é uma boa aproximação para tais medidas quando o desfecho é comum (> 10%). Para desfechos multinomiais é usual aplicar a regressão logística multinomial. Nesse contexto, não há estudos demonstrando o impacto da aproximação da RC nas estimativas de RR ou RP. O objetivo deste trabalho é apresentar e discutir métodos alternativos à regressão logística multinomial, baseados na regressão de Poisson e no modelo log-binomial. As abordagens foram comparadas por um estudo de simulação com diversos cenários. Assim como no caso do desfecho binário, os modelos propostos apresentaram estimativas mais precisas e acuradas para o RR ou RP do que a regressão logística multinomial. Então, também para os desfechos multinomiais não se deve utilizar a RC como aproximação do RR ou RP, pois conclusões incorretas podem ocorrer.Reports in Public HealthCadernos de Saúde Pública2014-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672Reports in Public Health; Vol. 30 No. 1 (2014): JanuaryCadernos de Saúde Pública; v. 30 n. 1 (2014): Janeiro1678-44640102-311Xreponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZenghttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672/11799https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672/11800Suzi Alves CameyVanessa Bielefeldt Leotti TormanVania Naomi HirakataRenan Xavier CortesAlvaro Vigoinfo:eu-repo/semantics/openAccess2024-03-06T15:28:51Zoai:ojs.teste-cadernos.ensp.fiocruz.br:article/5672Revistahttps://cadernos.ensp.fiocruz.br/ojs/index.php/csphttps://cadernos.ensp.fiocruz.br/ojs/index.php/csp/oaicadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2024-03-06T13:06:29.528300Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)true |
dc.title.none.fl_str_mv |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
title |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
spellingShingle |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives Suzi Alves Camey Odds Ratio Prevalence Ratio Logistic Models Relative Risk |
title_short |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
title_full |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
title_fullStr |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
title_full_unstemmed |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
title_sort |
Bias of using odds ratio estimates in multinomial logistic regressions to estimate relative risk or prevalence ratio and alternatives |
author |
Suzi Alves Camey |
author_facet |
Suzi Alves Camey Vanessa Bielefeldt Leotti Torman Vania Naomi Hirakata Renan Xavier Cortes Alvaro Vigo |
author_role |
author |
author2 |
Vanessa Bielefeldt Leotti Torman Vania Naomi Hirakata Renan Xavier Cortes Alvaro Vigo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Suzi Alves Camey Vanessa Bielefeldt Leotti Torman Vania Naomi Hirakata Renan Xavier Cortes Alvaro Vigo |
dc.subject.por.fl_str_mv |
Odds Ratio Prevalence Ratio Logistic Models Relative Risk |
topic |
Odds Ratio Prevalence Ratio Logistic Models Relative Risk |
description |
Recent studies have emphasized that there is no justification for using the odds ratio (OR) as an approximation of the relative risk (RR) or prevalence ratio (PR). Erroneous interpretations of the OR as RR or PR must be avoided, as several studies have shown that the OR is not a good approximation for these measures when the outcome is common (> 10%). For multinomial outcomes it is usual to use the multinomial logistic regression. In this context, there are no studies showing the impact of the approximation of the OR in the estimates of RR or PR. This study aimed to present and discuss alternative methods to multinomial logistic regression based upon robust Poisson regression and the log-binomial model. The approaches were compared by simulating various possible scenarios. The results showed that the proposed models have more precise and accurate estimates for the RR or PR than the multinomial logistic regression, as in the case of the binary outcome. Thus also for multinomial outcomes the OR must not be used as an approximation of the RR or PR, since this may lead to incorrect conclusions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672 |
url |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672/11799 https://cadernos.ensp.fiocruz.br/ojs/index.php/csp/article/view/5672/11800 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
publisher.none.fl_str_mv |
Reports in Public Health Cadernos de Saúde Pública |
dc.source.none.fl_str_mv |
Reports in Public Health; Vol. 30 No. 1 (2014): January Cadernos de Saúde Pública; v. 30 n. 1 (2014): Janeiro 1678-4464 0102-311X reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1821325547697864704 |