Item response theory (IRT): bayesian estimation of the ability of individuals

Detalhes bibliográficos
Autor(a) principal: Spenassato, Débora
Data de Publicação: 2010
Outros Autores: Kinas, Paul Gerhard
Tipo de documento: Artigo
Idioma: por
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/1713
Resumo: This article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included.
id FURG-7_91598b1465868875e7106c45d7787cc0
oai_identifier_str oai:periodicos.furg.br:article/1713
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Item response theory (IRT): bayesian estimation of the ability of individualsTeoria da resposta ao item (TRI): estimação bayesiana da habilidade de indivíduosInferência bayesianaMonte Carlo via Cadeias de MarkovOpenBUGSTeoria da Resposta ao ItemThis article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included.Este artigo tem por objetivo apresentar uma simulação da estimativa dos parâmetros das habilidades () de indivíduos sujeitos a um teste, utilizando o método da Teoria da Resposta ao Item (TRI). Para isso, foi feito uma análise bayesiana, onde utilizou-se o método Monte Carlo via Cadeias de Markov (MCMC), implementado em linguagem R de programação e utilizando o recurso do OpenBUGS implementado nas bibliotecas R2WinBUGS e BRUGS. O desempenho do estimador bayesiano das habilidades foi avaliado comparando as estimativas com as habilidades reais utilizadas nas simulações dos testes. Apresenta-se também, conceitos básicos sobre TRI, sendo este um novo método de avaliação educacional e com aplicações em várias áreas do conhecimento.Universidade Federal do Rio Grande2010-12-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1713VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 2 (2009); 74-84VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 2 (2009); 74-842358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/1713/860Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessSpenassato, DéboraKinas, Paul Gerhard2023-03-22T15:42:43Zoai:periodicos.furg.br:article/1713Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-03-22T15:42:43Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Item response theory (IRT): bayesian estimation of the ability of individuals
Teoria da resposta ao item (TRI): estimação bayesiana da habilidade de indivíduos
title Item response theory (IRT): bayesian estimation of the ability of individuals
spellingShingle Item response theory (IRT): bayesian estimation of the ability of individuals
Spenassato, Débora
Inferência bayesiana
Monte Carlo via Cadeias de Markov
OpenBUGS
Teoria da Resposta ao Item
title_short Item response theory (IRT): bayesian estimation of the ability of individuals
title_full Item response theory (IRT): bayesian estimation of the ability of individuals
title_fullStr Item response theory (IRT): bayesian estimation of the ability of individuals
title_full_unstemmed Item response theory (IRT): bayesian estimation of the ability of individuals
title_sort Item response theory (IRT): bayesian estimation of the ability of individuals
author Spenassato, Débora
author_facet Spenassato, Débora
Kinas, Paul Gerhard
author_role author
author2 Kinas, Paul Gerhard
author2_role author
dc.contributor.author.fl_str_mv Spenassato, Débora
Kinas, Paul Gerhard
dc.subject.por.fl_str_mv Inferência bayesiana
Monte Carlo via Cadeias de Markov
OpenBUGS
Teoria da Resposta ao Item
topic Inferência bayesiana
Monte Carlo via Cadeias de Markov
OpenBUGS
Teoria da Resposta ao Item
description This article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/1713
url https://periodicos.furg.br/vetor/article/view/1713
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/1713/860
dc.rights.driver.fl_str_mv Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 2 (2009); 74-84
VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 2 (2009); 74-84
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041761205354496