Item response theory (IRT): bayesian estimation of the ability of individuals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/1713 |
Resumo: | This article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included. |
id |
FURG-7_91598b1465868875e7106c45d7787cc0 |
---|---|
oai_identifier_str |
oai:periodicos.furg.br:article/1713 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Item response theory (IRT): bayesian estimation of the ability of individualsTeoria da resposta ao item (TRI): estimação bayesiana da habilidade de indivíduosInferência bayesianaMonte Carlo via Cadeias de MarkovOpenBUGSTeoria da Resposta ao ItemThis article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included.Este artigo tem por objetivo apresentar uma simulação da estimativa dos parâmetros das habilidades () de indivíduos sujeitos a um teste, utilizando o método da Teoria da Resposta ao Item (TRI). Para isso, foi feito uma análise bayesiana, onde utilizou-se o método Monte Carlo via Cadeias de Markov (MCMC), implementado em linguagem R de programação e utilizando o recurso do OpenBUGS implementado nas bibliotecas R2WinBUGS e BRUGS. O desempenho do estimador bayesiano das habilidades foi avaliado comparando as estimativas com as habilidades reais utilizadas nas simulações dos testes. Apresenta-se também, conceitos básicos sobre TRI, sendo este um novo método de avaliação educacional e com aplicações em várias áreas do conhecimento.Universidade Federal do Rio Grande2010-12-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1713VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 2 (2009); 74-84VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 2 (2009); 74-842358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/1713/860Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessSpenassato, DéboraKinas, Paul Gerhard2023-03-22T15:42:43Zoai:periodicos.furg.br:article/1713Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-03-22T15:42:43Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Item response theory (IRT): bayesian estimation of the ability of individuals Teoria da resposta ao item (TRI): estimação bayesiana da habilidade de indivíduos |
title |
Item response theory (IRT): bayesian estimation of the ability of individuals |
spellingShingle |
Item response theory (IRT): bayesian estimation of the ability of individuals Spenassato, Débora Inferência bayesiana Monte Carlo via Cadeias de Markov OpenBUGS Teoria da Resposta ao Item |
title_short |
Item response theory (IRT): bayesian estimation of the ability of individuals |
title_full |
Item response theory (IRT): bayesian estimation of the ability of individuals |
title_fullStr |
Item response theory (IRT): bayesian estimation of the ability of individuals |
title_full_unstemmed |
Item response theory (IRT): bayesian estimation of the ability of individuals |
title_sort |
Item response theory (IRT): bayesian estimation of the ability of individuals |
author |
Spenassato, Débora |
author_facet |
Spenassato, Débora Kinas, Paul Gerhard |
author_role |
author |
author2 |
Kinas, Paul Gerhard |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Spenassato, Débora Kinas, Paul Gerhard |
dc.subject.por.fl_str_mv |
Inferência bayesiana Monte Carlo via Cadeias de Markov OpenBUGS Teoria da Resposta ao Item |
topic |
Inferência bayesiana Monte Carlo via Cadeias de Markov OpenBUGS Teoria da Resposta ao Item |
description |
This article presents a simulation study for the estimation of ability measurements () of individuals subjected to a test designed according to the methodology of Item Response Theory (IRT). We used a bayesian approach and the Markov Chain Monte Carlo (MCMC) procedure to obtain the simulated posterior samples via OpenBUGS. The procedure was implemented in the R language and used the R2WinBUGS and BRUGS libraries. The performance of the Bayes estimator for individual abilities was evaluated by comparison with the corresponding true values which were used to simulate the test result data. The method performs well in terms of coverage by be posterior credibility sets. Basic notions about IRT as a new method to grade education tests, and possible other applications for the methods are also included. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/1713 |
url |
https://periodicos.furg.br/vetor/article/view/1713 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/1713/860 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 2 (2009); 74-84 VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 2 (2009); 74-84 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041761205354496 |