Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FURG (RI FURG) |
Texto Completo: | http://repositorio.furg.br/handle/1/1053 |
Resumo: | We obtain through a Matrix Product Ansatz the exact solution of the most general inhomogeneous spin chain with nearest neighbor interaction and with U(1)2 and U(1)3 symmetries. These models are related to the one loop mixing matrix of the Leigh-Strassler deformed N = 4 SYM theory, dual to type IIB string theory in the generalized Lunin-Maldacena backgrounds, in the sectors of two and three kinds of fields, respectively. The solutions presented here generalizes the results obtained by the author in a previous work for homogeneous spins chains with U(1)N symmetries in the sectors of N = 2 and N = 3. |
id |
FURG_22fbdd9e8bb333779f554620eda55fd1 |
---|---|
oai_identifier_str |
oai:repositorio.furg.br:1/1053 |
network_acronym_str |
FURG |
network_name_str |
Repositório Institucional da FURG (RI FURG) |
repository_id_str |
|
spelling |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgroundsSpin chainsMatrix product ansatzBethe ansatzAdS/CFTWe obtain through a Matrix Product Ansatz the exact solution of the most general inhomogeneous spin chain with nearest neighbor interaction and with U(1)2 and U(1)3 symmetries. These models are related to the one loop mixing matrix of the Leigh-Strassler deformed N = 4 SYM theory, dual to type IIB string theory in the generalized Lunin-Maldacena backgrounds, in the sectors of two and three kinds of fields, respectively. The solutions presented here generalizes the results obtained by the author in a previous work for homogeneous spins chains with U(1)N symmetries in the sectors of N = 2 and N = 3.2011-09-30T01:01:29Z2011-09-30T01:01:29Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLAZO, Matheus Jatkoske. Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds. Brazilian Journal of Physics, v. 38, n. 3B, p. 472-476, 2008. Disponível em: <http://www.sbfisica.org.br/bjp/files/v38_472.pdf> Acesso em: 29 set. 2011.0103-9733http://repositorio.furg.br/handle/1/1053engLazo, Matheus Jatkoskeinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURG2011-09-30T01:01:29Zoai:repositorio.furg.br:1/1053Repositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestopendoar:2011-09-30T01:01:29Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
title |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
spellingShingle |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds Lazo, Matheus Jatkoske Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
title_short |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
title_full |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
title_fullStr |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
title_full_unstemmed |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
title_sort |
Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds |
author |
Lazo, Matheus Jatkoske |
author_facet |
Lazo, Matheus Jatkoske |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lazo, Matheus Jatkoske |
dc.subject.por.fl_str_mv |
Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
topic |
Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
description |
We obtain through a Matrix Product Ansatz the exact solution of the most general inhomogeneous spin chain with nearest neighbor interaction and with U(1)2 and U(1)3 symmetries. These models are related to the one loop mixing matrix of the Leigh-Strassler deformed N = 4 SYM theory, dual to type IIB string theory in the generalized Lunin-Maldacena backgrounds, in the sectors of two and three kinds of fields, respectively. The solutions presented here generalizes the results obtained by the author in a previous work for homogeneous spins chains with U(1)N symmetries in the sectors of N = 2 and N = 3. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2011-09-30T01:01:29Z 2011-09-30T01:01:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LAZO, Matheus Jatkoske. Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds. Brazilian Journal of Physics, v. 38, n. 3B, p. 472-476, 2008. Disponível em: <http://www.sbfisica.org.br/bjp/files/v38_472.pdf> Acesso em: 29 set. 2011. 0103-9733 http://repositorio.furg.br/handle/1/1053 |
identifier_str_mv |
LAZO, Matheus Jatkoske. Integrable inhomogeneous spin chains in generalized Lunin-Maldacena backgrounds. Brazilian Journal of Physics, v. 38, n. 3B, p. 472-476, 2008. Disponível em: <http://www.sbfisica.org.br/bjp/files/v38_472.pdf> Acesso em: 29 set. 2011. 0103-9733 |
url |
http://repositorio.furg.br/handle/1/1053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FURG (RI FURG) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Repositório Institucional da FURG (RI FURG) |
collection |
Repositório Institucional da FURG (RI FURG) |
repository.name.fl_str_mv |
Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
|
_version_ |
1813187263494881280 |